- 1. Countable or uncountable (with proof)?
 - (a) $\bigoplus_{\mathbb{N}} \mathbb{Q} = \{(q_1, q_2...) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times ... : \text{only finitely many } q_i \text{ are non-zero.}\}.$
 - (b) $\Pi_{\mathbb{N}}\mathbb{Q} = \{(q_1, q_2...) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times ...\}$
- 2. For any open $G \subseteq \mathbb{R}$, show G is a countable union of balls, i.e. $\exists \{B_{r_j}(x_j)\}_{j\in\mathbb{N}}$ with $G = \bigcup_j B_{r_j}(x_j)$.
- 3. Let F_j be closed subsets, and G_j open subsets of a metric space (X, d). Proof or counter-example:
 - (a) $\cap_{j=1}^{\infty} G_j$ is open.
 - (b) $\cup_{j=1}^{\infty} F_j$ is closed.
- 4. Consider \mathbb{Z} the integers as a subspace of \mathbb{R} . Let $A \subseteq \mathbb{Z}$. Is A open in \mathbb{Z} (i.e. is A open relative to \mathbb{Z} ?) Is A open in \mathbb{R} . What about closed relative to \mathbb{Z} ? \mathbb{R} ?