1. Countable or uncountable (with proof)?
(a) $\oplus_{\mathbb{N}} \mathbb{Q}=\left\{\left(q_{1}, q_{2} \ldots\right) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \ldots\right.$: only finitely many q_{i} are non-zero. $\}$.
(b) $\Pi_{\mathbb{N}} \mathbb{Q}=\left\{\left(q_{1}, q_{2} \ldots\right) \in \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \ldots\right\}$
2. For any open $G \subseteq \mathbb{R}$, show G is a countable union of balls, i.e. $\exists\left\{B_{r_{j}}\left(x_{j}\right)\right\}_{j \in \mathbb{N}}$ with $G=\cup_{j} B_{r_{j}}\left(x_{j}\right)$.
3. Let F_{j} be closed subsets, and G_{j} open subsets of a metric space (X, d). Proof or counter-example:
(a) $\cap_{j=1}^{\infty} G_{j}$ is open.
(b) $\cup_{j=1}^{\infty} F_{j}$ is closed.
4. Consider \mathbb{Z} the integers as a subspace of \mathbb{R}. Let $A \subseteq \mathbb{Z}$. Is A open in \mathbb{Z} (i.e. is A open relative to \mathbb{Z} ?) Is A open in \mathbb{R}. What about closed relative to \mathbb{Z} ? \mathbb{R} ?
