Homework 2- ee 662

Author:

Collaborators:

Problem 1
Fisher’s Linear Discriminant Analysis

Background review: The idea behind Fisher’s Linear Discriminant analysis is to reduce the
dimensionality of the data to one dimension. That is, to take d-dimensional data and map it to one

dimension by finding the projections y = 7(X) = V_VT X . Then use these projections for classification

purposes. The goal is to find a w such that maximizes the distance between projected class means and
minimize the within-class variance:

w'S w
max, 4 ——=8—\-—>w_ oc S (1, — 11,)
w V_V§W V_V opt =W 1 2

In this problem we need to compare the effects of defining éw = 21 + 22 (being éi the covariance of

class i) or §w = | . Note that the second case is just a particular case of the general form.
Problem Projection with w_opt
4 50 1 1 .
—_ : cled
o class 1 P class 1 projected F‘.:.-leu
3
class 2 " pro)]

s

L L L L L . L L
-0 -5 0 <] 10 o 100 200 200 400 S00

1 -3 8 1
e (Casel: Meanl= .Mean2= .Standard deviation1=
1 1 11

31
Standard deviation2= L]]. 200 samples each class.

Setting iw =X +2,

5 ;
o class 1
" class 2
f
3 ¢ .
o i A Wt
‘ .
L] e ® e Jo
. . dos
) HERTRS R P e
O AN R wnune{ A .
of . 0 ' *
AR AT TN
1 Y et o ¢
o T 08 s O
R R S
. ® PR S e %
0 o N Wl f 0 C L
se 80 " T s
B# o n" °
| L
. P . .
i 5 § 2 2 [2 i § B 0

Data points in 2-d space

I histogram dim 1
/I histogram dim 2

Histogram class 1

00t
005
0
0005 b i
201

— projection class 1
projection class 2

0015+ A

Projection with w_opt

I histogram dim 1
I histogram dim 2 |

Histogram class 2

Settingéw =1

4
o dlass 1
° class 2
El o ° *
8
o0 & . s ':
2 R P S TR L B
o, ® I 3 °
2,800 0% S L
itie gt ga0ke 0 o
1 ° S N X T
priuh e g3 e %)
H o ae 0’ b Y B
o e o W
0 e sid oe e,
g e, e e .
w e D . °
1 . stet °
o
.
2 o °
3
4
-0 8 6 4 2 0 2) [8 10

Data points in 2-d space

— projecton class 1
projection class 2

o 20 40 60 80 100 120 140 160 180 200

Projection with w_subopt

Il histogram dim 1 Il histogram dim 1
Il histogram dim 2 | | I histogram dim 2 |

Histogram class 1 Histogram class 2

From the results we see that the difference is that by assuming éw = 21 + 22 we get w_opt

normalized, whereas in the other situation (SW = L) has an arbitrary ‘length’. However in

the Fisher’s Linear Discriminating analysis we are only interested in direction, length is not
important. In the following case we see bigger difference between the two situations both
in the between class separation and in the within class separation.

0 5 0
Case 2: Meanl= .Mean2= .Standard deviationl=
2 0 0.2
Standard deviation2= . 200 samples each class.
0.2
Setting iw =2 +Z,
4 T 0.1
o class1 —— projected class1
sl class 2|| 0.08 projected class 2|]|
0.06
2 i 0.04
1t . 0.02
ol | 0
-0.02
1r i -0.04
-2 ‘ : : -0.06 ‘ : s
40 5 0 5 10 0 50 100 150 200
Data points in 2-d space Projection with w_opt

50 T T T 60 T T T T T
I histogram dim 1 I histogram dim 1
I histogram dim 2 5 I histogram dim 2
40}]
40t -
30+ 1
30 q
20+ 1
20 q
10+ 1 10F |
0 L L L L 0 - L
30 20 10 0 10 20 30 -30 -20 -10 0 10 20 30
Histogram class 1 Histogram class 2
SettingS =1
=W =
4 40 T T -
projected class 1
projected class 2
3 L
2 L
l L
0 L |
|
-30}]
1t |
-40} 4
2 . . . 50 . . .
‘10 -5 0 5 10 0 50 100 150 200
Data points in 2-d space Projection with w_subopt
50 _ : 60 : : ‘ : :
I histogram dim 1 I histogram dim 1
I histogram dim 2 % I histogram dim 2
40+ g
40t -
30+ R
301 1
20+ R
20+ q
10+ 1 10t]
Q . - o ‘ %0 20 10 0 1Lo' 20 30
-30 -20 -10 0 10 20 30
. Hi ram class 2
Histogram class 1 Istogram class

In this second case, when we set §w = L the algorithm only optimizes this term: V_vT §BV_V,
and thus the dimension with larger |m_1-m_2| will be choosen (larger between classes).
Also in the second situation (iw = L) the algorithm does not take into consideration the

variance within class scatters; this is why we see clearly that in this situation the within
projected classes plot is less compacted in comparison with the situation where we

set iw = El + 22 Hence the results using the optimal Fisher’s solution show that the

classes are better separated. In the histograms provided we can see how different the
distributions for the two cases are, and this leads us to a second case where the advantage

of using the optimal Fisher’s solution is highlighted.

Problem 2

2.1 Neural Network classifier

Background review: In this section we have implemented an artificial multilayer neural network with

one hidden network. This is the topology of our network:

Figure. Topology of our Neural Network

Our goal now is to set the weights based on the training patterns and the desired outputs. To do so, we
have used the back-propagation algorithm. This is based on the gradient descent in error:

e Select a network architecture
e Initialize the weights to small random values

e Compute the corresponding outputs according to the training set

e For each epoch and each training example
O Input the training example to the network and compute the network outputs

0 For each output unit k
= J, < out (1-out,)(tar, —out,)
0 For each hidden unit h

= 5, «out (I-out)) > w5,

keoutputs

0 Update each network weight W,

Wi W, +Awi’j

AW, ; =775jxi’j

As a result of this algorithm the error between the targeted output and the real output is minimized. We
initialized the weights near to zero for convergence purposes, and set the algorithm to terminate when
the change in the criterion function J(w) (a function of the error) is smaller than some preset value.

For this experiment we have taken two different Gaussian classes or patterns, and we have divided
them using one part as a training set and the other one as a test set. The goal is to verify that error
training decreases as a function of epochs and the error in the test data decreases too, but is higher
than the previous one. We have experimented with several network configurations (different number of
nodes).

Experiment Results

We show some results of the performance of the neural network classifier for two different sets of data.
Issues such as number of nodes in each layer, functions used in each node, and number of epochs are
addressed:

Case 1: Meanl=1. Mean2=-1. Standard deviation1= \/E .Standard deviation2=\/§. Using 500 samples
to train the classifier, and 500 samples to test it.

1 w 1 : : ;
—— N1=3,N2=10,N3=2 F1=sigmoid,F2=sigmoid,F3=input
N1=10,N2=4,N3=2 —— F1=sigmoid, F2=sigmoid,F3=sigmoi
0.8t -~='N1=3,N2=4,N3=10 || 0.8¢ — Fl=input,F2=sigmoid, F3=sigmoid
N1=3,N2=4,N3=2
0.61 1 0.6
04 \h 1 0.4
\
)
\
0.2t 4 1 0.2
Jq
A3 6,‘ -~
\ R r—— 0 ‘ ‘ ‘
% 5 10 15 20 0 5 10 15 20
Error training as a function of epochs Error training as a function of epochs

Case 2: Mean1=3. Mean2=-3. Standard deviationl= \/5 .Standard deviation2=\/§. Using 500 samples of
each class to train the classifier, and 500 samples to test it.

07— —N1= —4 N3= ; 0.8 : : :
Nl_lO’NE 4’N3_2 —— Fi1=input, F2=sigmoid,F3=sigmoid
—— N1=3,N2=10,N3=2 o7l P — . i
0.6f ——Ni1= — _ - : F1=sigmoid,F2=sigmoid,F3=input
=3,N2=4,N3=10 —— F1=sigmoid, F2=sigmoid, F3=sigmoi
—— N1=3,N2=4,N3=2 0.6} =SIgMaid, F2=s1gmaid, =5=S1gmolg
05t
05 |
0.4t
0.4}
0.3t 0l
0.2t 02l
0.1t 0.1
0 ‘ ‘ ‘ %
0 5 10 15 20

Error training as a function of epochs

Error training as a function of epochs

The first and main conclusion of this classifier is that in order to train correctly the network is to apply
firstly the training samples of the first class and change the weights in the network ONCE. Next to apply

the training samples of the second class. Once we have all the classes trained once, we return to the first
one again and repeat the process until the stop criterion is achieved.

Above are shown the performance of the classifier in terms of the training error for different network
configurations. We define N1= number of nodes in the first layer, N2 = number of nodes in the hidden
layer, N3 = number of nodes in the last layer. In all the simulations we have taken half of samples as
training samples and the other half for testing purposes.

So we see that for small number of epochs the error training is small when use more nodes, regardless
at which layer they are. This is due to the larger number of weights (order of freedom) that it used.
When different types of functions where considered we observed that if we use sigmoids in all the
nodes there are no oscillations as the number of epochs increases, but the error is larger for small epoch
values.

Another interesting property is that no matter the combinations of functions we use, the convergence
error is still the same in all methods for each particular case.

2.2 Support Vector Machine

Background review: As a machine learning tool, SVM is about learning structure from data. In our case
we want to learn the mapping: X Y , where X € X is some objectand y €Y is a class label. The

method to do this is to find a function which minimizes an objective, like: Training Error + Complexity
Term. For this experiment we chose the following formulation:

: 1
min_, D(«) :EZaiajCD(xi)q)(xj) _Zyiai where @(X)D(X;) = Y;Y;(XX;)
[} 1
Subject to these constraints: 0 < ¢; <C VK and Zai y, =0

This is solved via matlab calling the quadprog function, which solves quadratic programming problems.

Then we define: W = Zai yiX;,and b=y, (1-¢&)—x,w, where | =amax;{¢;}.
i

Note that all data points having ¢; >0 will be the support vectors. Then the classify rule goes like this:
f (x,w,b) = sign(w.x —Db)
Experiment Results

Similar to project 1 we generated a pseudo-random sample points, which generate normally distributed
random numbers N(u,0) and separated into two different labeled classes. As in the neural network
classifier we show the performance of this classifier by showing its error training and error test. In this
case we have carried out two experiments: one set with data points more compacted and the other with

a more “relaxed” location, and we change different simulation parameter to examine the behavior of
our classifier.

Case 1: Meanl=1. Mean2=-1. Standard deviation1= \/E .Standard deviation2=\/§. Using 500 samples
to train the classifier, and 500 samples to test it.

8 - 800 i " i
° R o * quadratic classifier
6 LR class 2
R «
o ° @ o°
o ° owo o . °° °o° \ o o0 9 °o o o® 9, Q°°, GOO I xx 4
Seege (et et G p et e ;
o o Q
2:0290‘:): q°0°o°0°6 goﬁﬁoo ;"o 90%4%300 Y 20 & gx
00,1 “og00t e a2 0 4of PP %0 % 880 %0 o, 880 o 400 1
0. 00f By 55 0,500 Cort 8ok $osdY
9° 0 8540 o 8 . 20 g o Y@0o 00 O o o
097 o $og® FE° 0 | g%, Q ° 999 98, o
0téo 00 o @ roo gl ¢, 00 & IR 0, o%%o (T
08 0.0 ° 1%% o LX) gb 9+ 030 P00 %, ®0 02
A ,% 0% 3 °°v Y o ® oot o' % e o ©
24 gt e of ‘bﬂ: obe o 0091 of ® g0’ b 0% el 2001 |
P ° 0,4 ° ° .80 ° o' @ °
-4 ° 8 o ° ° 9
° 0 I]
-6 B
B 0 130 20 250 0 30 40 450 50 -20010 S 5 ‘5 10
Training set Quadratic classifier
of Support Vector # of Misclassification
250 T T T T T 120 : : :
2001 | 100 1
80+ 1
150 - h
60+ 1
100 h
40}]
50 b
20+ 1
0 ‘ ‘ ‘ s : 0 ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 0 2 4 6 8 10 12
c ¢}
Number of support vectors as a function of C=[0.01, Number of misclassification test samples as a function of C=[0.01,
0.1,1,5,10,20,50,100,200,500,1000]. In this case the position of 0.1,1,5,10,20,50,100,200,500,1000]. In this case the position of
vector C. vector C

Case 2: Mean1=3. Mean2=-3. Standard deviation1= \/§ .Standard deviation2zx/§. Using 500 samples of
each class to train the classifier, and 500 samples to test it.

15 2000 : ‘ ‘ ‘ ‘

x quadratic classifier

10 °
1500 S

ol

1000+ J

500 - 1

-10 : | =

L L I I _500 L L L Il Il
100 200 300 400 500 -15 -10 -5 0 5 10 15

-15
0

Training set

of Support Vector # of Misclassification
40 T T T 350 T T T T T

300 1

2501 1

2001 1

150 1

100+ 1

50 1

0 2 4 6 8 10 12
c()

Number of support vectors as a function of C=[0.01, Number of misclassification test samples as a function of C=[0.01,
0.1,1,5,10,20,50,100,200,500,1000]. In this case the position of 0.1,1,5,10,20,50,100,200,500,1000]. In this case the position of
vector C. vector C

From the results in both cases we can conclude that, for our data points, the parameter C may have the
optimal value as it gets larger, so when working with Gaussian data we may not need to know apriori
the problem under consideration since in both cases the trend as far as C is concerned is the same.

Surprisingly, the results in terms of number of misclassification for small C values are quite unexpected.
In the first case, where the data is more compacted, we have less number of misclassified points in the
second case, and intuitively we would have expected different results (other way around).

Finally, when the number of training samples was examined we observed that the resulting optimization
problems are dependent upon the number of training examples. As such, when this data is large other
methods for speeding up the algorithm should be addressed. The results in terms of the error are shown
in the following section along with the neural network classifier error.

2.3 Comparison between Neural Network classifier and Support Vector Machine classifier

In this section we briefly discuss the performance of both the neural network classifier and the SVM

classifier in terms of the test error performance. Note though, that there is no perfect comparison

between these methods, here we have focused on the error performance for different situations.

P(e) Neural Network Classifier SVM Classifier

Casel 0.6060 0.2393 0.2343 0.4764 0.2065 0.1763
2 epochs 8 epochs To infinity C=0.1 c=10 C=infinity

Case 2 0.5763 0.2532 0.2123 0.5432 0.2125 0.1664
2 epochs 8 epochs To infinity C=0.1 C=10s C= infinity

For our set-up we obtained the results shown above, where the SVM classifier performed better since it
achieves smaller error values for some C’s than the convergence error (best case) of the neural network
classifier. Also the error is smaller for the second case where the data is more separable.

The figures below show the performance of both classifiers in terms of error training.

Training Error
1 05 : :
0.8f A 0.4t 1
0.6 b 0.3} i
0.4r 1 0.2} 1
0.2+ b 0.1 i
0 * * : 0 ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 0 2 4 6 8 10 12
c)
Training error for the Neural Network Classifier as a function of Training error for the Support Vector Machine Classifier as a
epochs. function of C=[0.01, 0.1,1,5,10,20,50,100,200,500, 1000]. In this
case the position of vector C.

However, in terms of computational time, the neural network classifier performed much faster, and this
is something to take into account for large data sets.

Problem 3
3.1 Parzen Windows classifier

Background review: Parzen window approach consists of estimating densities by temporarily assuming

that the region R, is a d-dimensional hypercube. If hn is the length of an edge of that hypercube, then

its volume is given by V. = h? .

In the simplest case, if the window function is a unit function. Then, the estimate of the density at x is
given as:

11 [X=X
p"(x)zﬁé\/_n¢(- j

n
And by unit function we mean:

Llv,; £1/2;j-1,...,d
0, otherwise

#(v) = {

P, (X) expression suggests a general approach to estimating density functions. For Parzen window
method, the choice of the hypercube volume has an important effect on p, (X) . IfV, is too large, the

estimate will suffer from too little resolution; if V,, is too small, the estimate will suffer from too much
statistical variability. With a limited number of samples, the best we can do is to seek some acceptable

compromise. However, with an unlimited number of samples, it is possible to let V, slowly approach

zero as n increases and have p, (X) converge to the unknown density p(X).

Parzen Window design: Due to the Gaussian nature of our test and training data, [1] suggests the
following function:

o) - J;—ﬂexp(‘zv j

h
Using hn = Tl , Where hlis a design parameter we can obtain the estimate of the density expressed as
n

follows:

n

. (X) mlzmexp(_ (x=x) (x=x)/(2h2))

Experiment Results

As required in this project, and similar to project 1 we used a set of sample data, half of which is used as
training data and the other half is used as test data. To see the performance of our classifier we have
carried out several simulations using different lengths of data samples and different hypercube sizes.

As we proceeded in section 2, we generated other pseudo-random sample points, which generate

normally distributed random numbers N(u,0) and separated into two different classes. Note that for an
easy visualization of the results we opted for the 1-dimensional case.

Using the following statistical parameters to generate our sample points both training and test.

Meanl=1. Mean2=-1. Standard deviation1= \/E .Standard deviation2=\/§.

We first estimate the density function given the training points.

DskbuionEsiaionby Pazén Window e 1000h=0.1)

= Chsst
— sl

Using 1000 sample points and
h,=0.1

Disituion Erefn by Pazen Wicow e 000p =1)

Using 1000 sample points and h, =1

Distbuon Estmaion by Paroen Window {n=10001<5)

Using 1000 sample points and
h, =5

Distioufon Esimaon by Parzen Window 1= 1000011=0.1)

— Clsst
— Clssd

Using 10000 sample points and
h,=0.1

Disiouton Esimation by Pareen Winda {r=1000011=1)

= D!
— Omgl

1]

Using 10000 sample points and

h,=1

Disinbision Esafion by Parzen Wirdow (n=100001<5)

— sl
— s

Using 10000 sample points and h, =5

Distibuton Estimatien by Parzen Window {n=100000 1= 1)

— Cesst
Cessd

Using 100000 sample points and h1 =0.1

Distributon Estmation by Parzen Window {n=100000 1<)

Using 100000 sample points and hl =1

Distiution Estmation by Parzen Window (n=100000.41=5)

Using 100000 sample points and hl =5

= Oass!
Cassl

It can be seen from the above figures that the results depend on both n and h1. As n increases the

estimate matches better with the true density function, and as h decreases the estimated pdf gets

thinner.

So, once we have tested several estimates of density functions using the training data we can classify

the data test by Parzen window method. To do so, we first need to estimate the a posteriori probability

of the data test given the training set, i.e.,, P(W, | X). Thus, using the total joint probability theorem

we can denote:

Pn(Wi |X): Cpn(X’Wi)

Z pn(X1Wj)

Where p,(X,W,)is the estimate for the joint probability P(w;, X), that can be thought as if we place a

cell of volume V, around the training set and capture k samples, ki of which turn out to be labeled

W;. Roughly speaking the estimate of the posteriori probability that W, is the state of nature is merely

the fraction of the samples within the cell that are labeled W;. Therefore, to get a minimum error

expression we select the category most frequently represented within the cell. Note this approach is

highly dependent on the V, .

Table 1. Probability of error due to the Parzen Window classifier

P(e) N =1000 N = 10000 N = 100000
h1=0.01 0.2060 0.1764 0.1420
h1=0.1 0.2120 0.2196 0.2305
hl=1 0.2322 0.2318 0.2283
hl=5 0.2310 0.2294 0.2283

Table 1 shows that as h1 (parameter that defines the
size of the cell) goes to smaller values, the P(e) also
decreases, which indicate that the error can be
arbitrarily low by setting the window width sufficiently
small. This phenomena can be observed in figure 4.8

Of DHS bOOk' (nght Slde)' FIGURE 4.8. The decision houndaries in a two-dimensional Parzen-window di-

chotomizer depend on the window width h. At the left a small h leads to boundaries
that are more complicated than for large h on same data sel, shown at the right. Appar-
ently, for these data a small h would be appropriate for the upper region, while a large
h would be appropriate for the lower region; no single window width is ideal over-
all. From: Richard O. Duda, Peter E. Harl, and David G. Stork, Pattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc.

3.2 KNN Classifier

Background review: The idea of the K-Nearest Neighbor technique consist of estimating p(x) from a set

of training samples where a cell is centered around x and it grows until captures K, samples, where K is

function of n (generally k, = 4/n _ training is good enough, n_training=n/2). Obviously the key point is
to set K, to go to infinity as n goes to infinity as well, assuring that simple K, /N is a good estimate of the

probability that any given point falls in the cell of volume V, .

Experiment Results

To be consistent with the previous experiment we consider 1-dimensional case and particularly the

same sample data. So, denoting Mean1=1. Mean2=-1. Standard deviation1= \/E .Standard

deviation2=+/2 , and k, =+/n_training .

Distribution Estimation by k-Nearest Neighbor Method (n=1000) Drsiribubon Estimatian by k-Nearest Nesghber Method {n=10000}

[— Cass 1 | — Cass i
Cass?

Using n=1000 points Using n=10000 points

Distribution Estimation by k-Nearest Neighber Method (n=100000, kn:m) Distribution Estimation by k-Nearest Neighbor Methed (n=1 UUUUU‘k"=316)

— Class 1 — Class 1
Coss? | — cess2 |

Using n=1000000 points

Using n=100000 points

We classify the test data according to the following method:

. . : ki /n
e We estimate the probability P(X|w,),i=1and 2,as p,(X|w;) = RV
e We compare P(x|w,) and P(X|w,)to choose the larger one as the class. We

ignore prior probabilities since we assume them equal.

In table 2 are shown the results of the performance of the K-Nearest Neighbor classifier in terms
of P(e) as function of the length of our data set.

N = 1000 N = 10000 N = 100000 N=1000000

P(e) 0.2160 0.2244 0.2284 0.2318

Table 2. P(e) using K-NN method

3.3 NN Classifier

This is a particular case of the K-Nearest Neighbor method, where the class is predicted to be the class
of the closest training sample, i.e. the algorithm just looks at one nearby neighbor. If the number of

samples is not large it makes a good sense to use, instead of the k-nearest neighbor, the single nearest
neighbor

Again, defining Mean1=1. Mean2=-1. Standard deviation1= \/5 .Standard deviation2=\/§, andk, =1.

Distribution Estmation by Nearest Neighbor Method (n=10000 =1}

Distribution Estimation by Nearest Neighbor Method (n=1000k=1)
T

— Class 1
— Class2

Using n=1000 points Using n=10000 points

Distribuion Esimation by Nearest Neighbor Method (n=100000,k=1)
T T

Distribution Estimation by Nearest Meighber Method (n=100000,k=1)
: .

S | ==
— Class2 i — Ciss?

Iy
.l i i | “
1 *J\ AT

0 5 10

Using n=100000 points

Using n=1000000 points

In table 2 are shown the results of the performance of the K-Nearest Neighbor classifier in terms
of P(e) as function of the length of our data set.

N =1000

N = 10000

N = 100000

N=1000000

P(e)

0.2070

0.1837

0.1823

0.1688

Table 3. P(e) using NN method

Comparison of all three classifiers

The comparison of density measurement by three methods is shown in the following figure considering
n=50000 data points. Where for each class has been represented the original distribution, the parzen
(h1=1) estimation, the K-NN, and NN methods respectively.

Comparison between Parzen and KNN, and the original distribution (n=50000)

045
Class 1 KNN
04 L —— Class 2 KNN
] —— Class 1 Parzen
1 1| ESSSSSSSSNRNESUSRUSUS OSSR | U — C!ass 2 Parzen
-== Class 2 Original
0.3 =-== Class 1 Original
0.25
[15| S ——————— TV TWiset— 2ol | | Y| [P, s e st s -
0.15
0_1_ .. .|
0.05
--di' ' Y i v : s\
-5 o 5 10

Note that the result of the NN is shown in the following figure, since using the same number of data
points than the other two methods the estimate has large peaks.

Distribution Estimation by Nearest Neighbor Method (nZSODOO,knﬂ)

— Class1
—— Class 2

The comparison of the performance of all three methods in terms of P(e) is provided in the following
table. In the cases we use have of the total data as a training set and the other half as a test set.

P(e) N=1000 N=10000 N=100000 N=1000000
Parzen Window 0.2120 0.2196 0.2305 0.2331

(h, =0.1)

Parzen Window 0.2322 0.2318 0.2283 0.2284

(h1 =1)

KNN 0.2160 0.2244 0.2284 0.2318

(k, = 4/n_training)

NN (kn =1) 0.2170 0.2237 0.2193 0.2188

Table4. P(e) comparison for Parzen, KNN, and NN methods

It can be seen that when the sample data are small, the error results fluctuate, but as N increases the
Parzen and KNN methods the classification errors from these methods are getting closer and eventually
converge to the same error statistics. Nearest Neighbor has, for this data, a smaller error probability
than the other two methods, this leads to the following statement: among the k-nearest neighbor, the
single neighbor rule is admissible. In fact, in [1] the authors show that under certain conditions 1-NN
achieves a lower error rate than k-NN. However, the usage of large values of k in the k-Nearest Neighbor
yields to smoother decision regions. In general, it is better to use K>1 but not too large since it could
lead to over-smoothed boundaries.

[1] T.M. Cover, and P.E. Hart, “Nearest Neighbor Pattern Classification”, IEEE Transactions of Information
theory, vol. 17, no. 1, January 1967.

APPENDIX(Source Code)
P.1 paramet.m mean_x1 = 1; % 2-dim
% Hw 2 p1 Parametric Method var_x1=2; Mean1=[11];
clear all;close all; mean_x2 =-1; Mean2 =[-3 1]
% sample points var_x2=2; std1=[81,11];
n1=200: x1=mean_x1 + std2=(31;11];
’ sqrt(var_x1)*randn(1,n1);
n2=200; data_class1 = mvnrnd(Mean1,std1,n1);

X2 =mean_x2 +
% 1-dim sqrt(var_x2)*randn(1,n2); data_class2 = mvnrnd(Mean2,std2,n2);

plot(data_class1(:,1),data_class1(:,2),'ko
');hold on;

plot(data_class2(:,1),data_class2(:,2),'g+
);

x1=data_class1;
x2=data_class2;

figure,
mhu_1=(1/n1)*(sum(x1));
mhu_2=(1/n2)*(sum(x2));
bet_scatter= (mhu_1-mhu_2);
% S_B = eye(f,c);

S_W1 =size(x1,1)*cov(x1);
S_W2 =size(x2,1)*cov(x2);
S W=S WI1+S W2;
[f,cl=size(S_W);
%S_W=eye(f,c);
w_opt=S_W\bet_scatter’;
% Projections
y1=x1*w_opt;

y2 = x2*w_opt;

bin =0.1;

X =-25:bin:25;

xa = 1:length(y1);
xb=1:length(y2);
plot(xa,y1,'k',xb,y2,'g")figure,
hist(x1,x);

figure,

hist(x2,x);
%plot(y1,'k');hold on;

%plot(y2,'g');hold off;

P2 Neural Network

% performs backpropagation algorithm
close all;clear all;
N1=6;N2=12;N3=3;

iter = 50;

iter_test = 50;

Target = zeros(1,N3);

% initialize weights

W_hid_in = rand(1,N1);

W_hid_out = rand(1,N2);
error_epoch = zeros(1,iter);
error_epoch_test = zeros(1,iter_test);
Meanl =1;

Mean2 =-1;

stdl=2;

std2 =2;

data_class1 = Meanl +
std1*randn(1,N1);

data_class2 = Mean2 +
std2*randn(1,N1);

for k=1:iter
if (mod(k,2)==0)
training_data = data_class1;
else
training_data = data_class2;
epoch=k,
end
fori=1:N1
sig_output(i) = training_data(i);
end

% training the neural network step

% outputs

for n=1:N3
in_last(n)=0;

for j=1:N2
input_hid(j)=0;

fori=1:N1

input_hid(j) =
input_hid(j)+W_hid_in(i)*sig_output(i);

end
W_old_hidden(:,j) = W_hid_in';

sig_output_hid(j) = (1)/(1+exp(-
input_hid(j)));

in_last(n) =
sig_output_hid(j)*W_hid_out(j)+in_last(
n);
end
out(n) = (1)/(1+exp(-in_last(n)));
W_old_output(:,n) = W_hid_out’;
end
lear_rate = 0.25;
% backpropagation step
% calculate errors of output neurons
fori=1:N3

delta(i) = out(i)*(1-out(i)) *(Target(i)-
out(i));

end
% Change output layer weights
fori=1:N2
for j=1:N3
W_new_output(i,j) =
W_old_output(i,j)+lear_rate*delta(j)*sig
_output_hid(i);

end

end

% back-propagate
fori=1:N2
ssuumm=0;
for j=1:N3

ssuumm =
delta(j)*W_new_output(i,j)+ssuumm;

end

delta_hid(i) = sig_output_hid(i)*(1-
sig_output_hid(i))*ssuumm;

end
% change hidden layer weights
fori=1:N1

for j=1:N2

W_new_hidden(i,j) =

W_old_hidden(i,j)+lear_rate*delta_hid(j
)*training_data(i);

end
end
W_old_output = W_new_output;
W_old_hidden = W_new_hidden;
% forward pass with the new weights
fori=1:N1

sig_output(i) = training_data(i);
end
% outputs
for n=1:N3

in_last(n) = 0;

W_hid_out = W_new_output(:,n)’;
for j=1:N2

input_hid(j) = 0;

W_hid_in = W_new_hidden(:,j)";

fori=1:N1

input_hid(j) =
input_hid(j)+W_hid_in(i)*sig_output(i);

end

sig_output_hid(j) = (1)/(1+exp(-
input_hid(j)));

in_last(n) =
sig_output_hid(j)*W_hid_out(j)+in_last(
n);
end
output(n,k) = (1)/(1+exp(-in_last(n)));
error(k) = abs(Target(n)-output(n,k));

end

error_epoch(k) =
(error_epoch(k)+error(k))/k;

end

x=1:iter;
plot(x,error_epoch,'k’); hold on;
y=zeros(1,iter_test);

%% Testing...

for k=1:iter_test

data_class1 = Meanl +
std1*randn(1,N1);

data_class2 = Mean2 +
std2*randn(1,N1);

% Generating the test data
p=randperm(2);

if (p(1)==1)

training_data = data_class1;
else

training_data = data_class1;
end

epoch=k,

fori=1:N1

sig_output(i) = training_data(i);
end
% outputs
for n=1:N3
in_last(n) = 0;
for j=1:N2
input_hid(j) = 0;
fori=1:N1

input_hid(j) =
input_hid(j)+W_hid_in(i)*sig_output(i);

end

sig_output_hid(j) = (1)/(1+exp(-
input_hid(j)));

in_last(n) =
sig_output_hid(j)*W_hid_out(j)+in_last(
n);

end

outpu_test(n,k) = (1)/(1+exp(-
in_last(n)));

error_test(k) = abs(Target(n)-
outpu_test(n,k));

end

error_epoch_test(k) =
(error_epoch_test(k)+error_test(k))/k;

y(k)=(y(k)+1)/k

end

x=1:iter_test;

%plot(x,y,'b"); hold on;
plot(x,error_epoch_test,'g’); hold off;

Ssvm

Clear all; close all;
nsample = 100;
Meanl = 1;

Mean2 =-1;

std1l=2;
std2 =2;

data_class1 = Mean1 +
std1*randn(1,nsample/2);

data_class2 = Mean2 +
std2*randn(1,nsample/2);

X(1:nsample/2) = data_class1;
X(nsample/2+1:nsample) = data_class2;
X =sort(X);

plot(data_class1,'ko");hold on;
plot(data_class2,'g+');

p = randperm(nsample);
Y(p(1:nsample/2)) = -1;
Y(p(nsample/2+1:nsample)) = 1;

% the trade-off weights

Cc=[0.1, 1, 5, 10, 20, 50, 100, 200, 500,
1000, 2000, 5000, 10000, 100000];

Margin = []; % margin; initialized as
null

nSV=[]; % number of support vector;

nMis =[]; % number of
misclassification;

Err=[]; % training errors;
XY,
forn=1:max(size(C)),
% construct Hessian matrix;
H = zeros(nsample, nsample);
fori=1:nsample,
forj=1:nsample,
H(i.j) = X()*XG)*Y(i)*Y();
end
end

H = H+1e-10*eye(size(H));

F =-ones(nsample,1); % F'*
Alpha corresponds to sigma_i(Alpha_i)
in object function

% set up equality constraints

A=Y, % corresponds to
sigma_i(Alpha_i *Y_i)=0

b=0;

% set up upper and lower bounds for
alpha: LB <= Alpha <= UB

UB = zeros(nsample, 1);

LB = C(n)*ones(nsample, 1);
% starting point of alpha
AlphaO = zeros(nsample, 1);

% optimizing alpha with quadratic
programming

[Alpha] = quadprog(H, F, [], [], A, b,
LB, UB, Alpha0),

% tolerance for support vector
detection; we will ignore the alphas less
than tol

tol = 0.0001;

% calculate weight

w=0;

fori=1:nsample,

w =w + Alpha(i) * Y(i) * X(i);
end

% calculate bias

bias = 0;

bl=0;

fori=1:nsample,

if (Alpha(i) > tol & Alpha(i) <
C(n) - tol),

b1 =b1+X(i) * w-Y(i);

b2=b2-1;

end
end
ifb2~=0,
bias =b1/b2;

else % unlikely

fori=1:nsample,
if Alpha(i) < tol,
b1 = b1 +X(i) * w - Y(i);
b2=b2-1;
end
end
ifb2~=0,
bias =b1/b2;

else % even unlikelier

fori=1:nsample,

b1 =b1 +X(i) *w- Y(i);

b2=b2-1;
end
ifb2 ~=0,
bias =b1/b2;
end
end
end

% margin=2/[[w][]

Margin = [Margin, 2 / abs(w)];

% number of support vectors

nSV = [nSV, size(find(Alpha > tol), 1)];

% calculate # of misclassification and
training error

fori=1:nsample,

predict =w * X(i) + bias;
=w*X+b

if predict >=0 & Y(i) < 0,

m=m+1;

end

if predict <0 & Y(i) >= 0,

m=m+1;

end

if Alpha(i) > tol,

e=e+1-predict * Y(i);

end

end

nMis = [nMis, m],

Err = [Err, €],

end

Z = zeros(size(C));

fori=1:size(C, 2)

Z(i) = i;

end

figure

plot(Z, Margin);

title('Margin');

xlabel('C(i)');

figure

plot(Z, Err);

title('Training Error’);

xlabel('C(i)');

figure

%Y

plot(Z, nMis);

title('# of Misclassification');
xlabel('C(i)');

figure

plot(Z, nSV);

title('# of Support Vector');
xlabel('C(i)');

P3 Parzen Window

clear all;

close all;

% initialize random number generator
randn('state',100)

n = 5000;

n_train = n/2;

n_test =n/2;

% Data set 1: x1 with distribution N(a,b)
(mean=a, var=b)

mean_x1=1;

var_x1=2;

x1 =mean_x1 + sqrt(var_x1)*randn(1,n);

mean(x1)

var(x1)

x1_train = x1(1:n_train);
x1_test = x1(n_train+1:end);

% Data set 2: x2 with distribution N(a,b)
(mean=a, var=b)

mean_x2 =-1;

var_x2 = 2;

x2 = mean_x2 + sqrt(var_x2)*randn(1,n);

mean(x2)

var(x2)

x2_train = x2(1:n_train);
x2_test = x2(n_train+1:end);
bin =0.1;

x =-5:bin:10;

L _x = length(x);

figure

hist(x1,x)

dis_1 = hist(x1,x);

%normalize the value of distribution to
(0,1)

y_1=dis_1/(n*bin);

figure

hist(x2,x)

dis_2 = hist(x2,x);

%normalize the distribution to (0,1)

y_2 =dis_2/(n*bin);

figure

plot(x,y_1,'b-'x,y_2,'r.-')
title('Distribution of Class 1 and Class 2')
grid on

legend('Distribution of
class1','Distribution of class2')

% 1-dimentional

d = 1; % dimention

%setting h1
hl=1;

hn = h1/sqrt(n_train);

Vn = hn”d;

Q1 =zeros(1,n_train);
prob1_train = zeros(1,L_x);
Q2 =zeros(1,n_train);

prob2_train = zeros(1,L_x);

% window function
fori=1:L_x
forj=1:n_train

Q1(j) = 1/(sqrt(2*pi)) *exp(-(x(i) -
x1_train(j))*2/(2*hn"2));

Q2(j) = 1/(sqrt(2*pi)) *exp(-(x(i) -
x2_train(j))*2/(2*hn"2));

prob1_train(i) = prob1_train(i) +
1/n_train*1/Vn*Q1(j);

prob2_train(i) = prob2_train(i) +
1/n_train*1/Vn*Q2(j);

end
end
figure

plot(x,prob1_train,'k.-',
x,prob2_train,'g.-")

grid on
hold on

title('Distributioin Estimation by Parzen
Window (n=4000,h1=1)")

legend('Class1','Class2’)
%errors by Parzen window method
errorl_parzen = 0;
error2_parzen = 0;
fori=1:n_test

% find(X) locates all nonzero elements
of array X, and returns the indices of

those elements

j1_parzen = find(abs(x-x1_test(i)) <=
0.1);

if (prob1_train(j1_parzen) <
prob2_train(j1_parzen))

errorl_parzen = errorl_parzen + 1;
end

j2_parzen = find(abs(x-x2_test(i)) <=
0.1);

if(prob2_train(j2_parzen) <
prob1_train(j2_parzen))

error2_parzen = error2_parzen + 1;
end
end

error_parzen_total = errorl_parzen +
error2_parzen

error_parzen_prob =
error_parzen_total/(2*n_test)

KNN

clear all

close all

% Using the normally distributed data
from MATLBA random number

generator

% for the data used in this problem.

%sample data
n = 5000;
n_train = n/2;
n_test=n/2;

% Data set 1: x1 with distribution N(a,b)
(mean=a, var=b)

mean_x1=1;
var_x1=2;

x1=mean_x1+
sqrt(var_x1)*randn(1,n);

mean(x1)

var(x1)

x1_train = x1(1:n_train);
x1_test = x1(n_train+1:end);

% Data set 2: x2 with distribution N(a,b)
(mean=a, var=b)

mean_x2 =-1;

var_x2 =2;

X2 = mean_x2 +
sqrt(var_x2)*randn(1,n);

mean(x2)

var(x2)

x2_train = x2(1:n_train);
x2_test = x2(n_train+1:end);
bin=0.1;

x =-5:bin:10;

L_x =length(x);

figure

hist(x1,x)

dis_1 = hist(x1,x);

%normalize the value of distribution to
(0,1)

y_1=dis_1/(n*bin);

figure

hist(x2,x)

dis_2 = hist(x2,x);

%normalize the distribution to (0,1)

y_2 =dis_2/(n*bin);

figure

plot(x,y_1,'b-',x,y_2,'r.-")
title('Distribution of Class 1 and Class 2')
grid on

legend('Distribution of
class1','Distribution of class2')

% function of kn (KNN)
kn = round(sqrt(n_train));
% function of kn (NN)
kn=1;

probl_nn = zeros(1,L_x);

prob2_nn = zeros(1,L_x);
fori=1:L_x

index_sortl = sort(abs(x1_train -

x(@));
Vnl =2 * index_sort1(kn);

index_sort2 = sort(abs(x2_train -

x(i)));

Vn2 =2 * index_sort2(kn);

if (Vn1>0)

probl_nn(i) = kn/n_train/Vn1;
end

if(Vn2 > 0)

prob2_nn(i) = kn/n_train/Vn2;
end

if (prob1_nn(i)>10)

prob1_nn(i)=0;
end
if (prob2_nn(i)>10)
prob2_nn(i)=0;
end
end
figure
plot(x,prob1_nn,'k.-',x,prob2_nn,'g.-")
grid on
title('Distribution Estimation by k-
Nearest Neighbor Method
(n=100000,k_n=316)')
legend('Class 1','Class 2')
error_nn_total = 0;

errorl_nn=0;

error2_nn =0;
fori=1:n_test
j1_nn = find(abs(x-x1_test(i)) <=0.1);

if (prob1_nn(j1_nn) <
prob2_nn(j1_nn))

errorl_nn=errorl_nn +1;
end
j2_nn = find (abs(x-x2_test(i))<=0.1);

if(prob2_nn(j2_nn) <
probl_nn(j2_nn))

error2_nn =error2_nn +1;
end
end

error_nn_total = (errorl_nn +
error2_nn)/2/n_test

