Question 1
The purpose of this question is to analyze a method of drawing a separation hyperplane between two classes using the Fisher Linear Discriminant, or the cost function. In this method, the parametric method searches for various directions in the data which have the largest variance and project the data onto this vector. Consequently, a lower dimensional representation of the data is achieved, which sometimes also eliminates “noise” in the data.

Case 1: Original Fisher LDA
References:
· http://www.ics.uci.edu/~welling/classnotes/papers_class/Fisher-LDA.pdf

· http://203.64.42.72/MatLab/
The Fisher LDA maximizes the following cost function to achieve this:
[image: image19.jpg]LDA projection of IRIS data onto the first 2 discriminant vectors

asf * e .
at &, o Fad P &

45 04 O%%X&‘X“ >1<X

4 5 6 7 8
Leave-one-out misdlassification count = 10

Class 1
O Class2
¥ Class 3

In this function. SB is “between class scatter matrix”, and SW is the “within class scatter matrix”. The scatter matrices can be calculated using:

[image: image2.emf]
[image: image3.emf]
[image: image4.emf]
[image: image5.emf]
Therefore, a good solution results when the class-means are well separated, relative to the variance in the data belonging to each class, which implies that the gap between data belonging to different classes should be large. The argmax of the cost function J(w) is calculated, and the solution is found to be:

[image: image6.png]

Using this information, MATLAB was used to perform Fisher Linear Discriminant Analysis on Iris data. This is a famous data set often used in pattern recognition applications, and it contains 50 samples from three species of Iris flowers: setosa, virginica and versicolor. Four features are measured for each sample, which include the length and width of the sepal and petal. Interestingly, Fisher developed his linear discriminant model on this data set.
The MATLAB code performs leave-one-out analysis repeatedly on different sets of the same data. It first performs analysis on the entire data set, and continues to reduce the dimension by one every iteration. To give a visual representation, the program projects the IRIS data on the first and last two discriminant vectors separately. As shown in the plots below, the separation between the data using the first two discriminant vectors is more evident than in the latter case. This is also reflected numerically, as the misclassification count in the first case is 3, and 19 for the second case.
[image: image7.jpg]LDA projection of IRIS data onto the first 2 discriminant vectors

05

25

o
@q
« X o
)
Mok L + Class1
& P2
W O Class2
¥ ¥ Class3
25 -2 15 -1 05 0 05 1 15

Leave-one-out misdlassification count = 3

[image: image8.jpg]LDA projection of IRIS dats onto the last 2 discriminant vectors

=35 +
) 7
o +
o tHe
45 < whit
s 4 *
. o &, 3
* o T %
5 8 b
55 «
080
- @;& Sl +
F x o X%
6 5% 8
E
65 R Sho
By, WO g # Class 1
7 O Class 2
® * Class 3
750 *
3 -6 -5 -4

Leave-one-out misdlassification count = 19

The table below shows the recognition rates for all the previous discussed cases, using the Fisher Linear Discriminant Function.
Table 1 Leave-One-Out Analysis (Original Fisher LDA)
	Full data
	LOO error count = 6

	
	Recognition rate = 144/150 = 96.00%

	Partial data after LDA (dimension = 4):
	LOO error count = 6

	
	Recognition rate = 144/150 = 96.00%

	Partial data after LDA (dimension = 3):
	LOO error count = 8

	
	Recognition rate = 142/150 = 94.67%

	Partial data after LDA (dimension = 2):
	LOO error count = 3

	
	Recognition rate = 147/150 = 98.00%

	Partial data after LDA (dimension = 1):
	LOO error count = 7

	
	Recognition rate = 143/150 = 95.33%

Case 2: Modified Fisher LDA
References:
· http://www.ics.uci.edu/~welling/classnotes/papers_class/Fisher-LDA.pdf

· http://203.64.42.72/MatLab/
We will now consider a variant of the Fisher LDA method. An important property of the LDA method is that it depends only on the direction of the optimal solution. Therefore, scaling the vector w0 by a constant factor does not affect the classification results. Therefore, we can choose w such that the denominator of the cost function J(w) is 1. This reduces the optimization problem to:
[image: image9.emf]
The solution to the above problem is the largest eigenvalue which maximizes the cost function J(w). To see the results of the LDA analysis with this newly proposed method, we substitute the identity matrix for SW in the existing MATLAB code. We obtain the following results:

[image: image1.emf][image: image10.jpg]LDA projection of IRIS data onto the first 2 discriminant vectors

asf * e .
at &, o Fad P &

45 04 O%%X&‘X“ >1<X

4 5 6 7 8
Leave-one-out misdlassification count = 10

Class 1
O Class2
¥ Class 3

[image: image11.jpg]08

12

-14

16

18

LDA projection of IRIS data onto the last 2 discriminant vectors

)
& + Class1
" ¥ ;& ot O Class 2
OO)Q* ngogx 5 ¥ Class3
* * oK
* L A °
% o wxi %
LF L. * 5
o M # i x
R [x
¥ &
© % 8 %5 a6 x
* e
. 85 0,
ot o @ o

24 26 28 3 32 34 36 38
Leave-one-out misdlassification count = 91

Table 2 Leave-One-Out Analysis (Modified Fisher LDA)

	Full data
	LOO error count = 6

	
	Recognition rate = 144/150 = 96.00%

	Partial data after LDA (dimension = 4)
	LOO error count = 6

	
	Recognition rate = 144/150 = 96.00%

	Partial data after LDA (dimension = 3)
	LOO error count = 6

	
	Recognition rate = 142/150 = 96.00%

	Partial data after LDA (dimension = 2)
	LOO error count = 10

	
	Recognition rate = 147/150 = 93.33%

	Partial data after LDA (dimension = 1)
	LOO error count = 14

	
	Recognition rate = 143/150 = 90.67%

Comparison:

Table 3 Comparison of Case 1 and Case 2

	
	Recognition Rate

(Original Fisher LDA Method)
	Recognition Rate

(Modified Fisher LDA Method)

	Full Data
	96.00%
	96.00%

	Partial data after LDA (dimension = 4):
	96.00%
	96.00%

	Partial data after LDA (dimension = 3):
	94.67%
	96.00%

	Partial data after LDA (dimension = 2):
	98.00%
	93.33%

	Partial data after LDA (dimension = 1):
	95.33%
	90.67%

As mentioned earlier, a constant factor scaling of the projection vector does not have an effect on the cost function J(w). This is indicated by the matching recognition rates of the full data, which is the same as the partial data with dimension of 4. However, once the partial data is reduced by a dimension, the error rates are different in the two methods, as shown in the comparison table above. This can also be seen in the visual representation, by comparing Figures 1 and 3, and Figures 2 and 4. It seems that the Iris data is being projected onto different vectors by the two LDA methods. In the first case, the data is far more separable, and therefore yields a higher recognition rate of 95.33% in 1D. In the second case, the projection of the first 2 discriminant vectors is separable, but the last 2 discriminant vectors have significant overlap. This causes Case 1 to have a higher overall recognition rate.
Question 2

Case 1: Neural Network Classifier

References:
· http://www.cs.nott.ac.uk/~gxk/courses/g5aiai/006neuralnetworks/neural-networks.htm

· http://isp.imm.dtu.dk/toolbox/ann/
This code was obtained from the ANN: DTU Toolbox, which is a collection of Artificial Neural Networks (ANN) algorithms in MATLAB. This particular algorithm for classifying data using neural network implements a 2 layer feed-forward network. It uses a hyperbolic tangent function for the hidden layer, and the “softmax” function for the output layer. The softmax function allows the algorithm to view the output of the neural network as probabilities. The neural network implements a ‘fast BFGS algorithm with soft linesearch’ to optimize network weights, which are calculated using a maximum a posteriori technique. The cross-entropy error function is implemented with a Gaussian prior over the weights, and MacKay’s ML-II procedure is used for regularization to prevent over-fitting. In order to run this algorithm, the user needs to specify the number of hidden units, and data file. An example of a 2 layer feed-forward neural network is shown in the figure below.
[image: image12.png]I

Figure 1 Example of 2 Layer Feed-Forward Neural Network
In such a network, each layer consists of units which receive input from a layer directly before, and send outputs to a layer directly after. No connections are made within a layer, and all connections are in a forward direction, thus eliminating loops and cycles. The NI input inputs are first fed into the first layer of hidden units. (The input units do not process any data in themselves.) The hidden units are activated by functions Fi of the weighted inputs plus some bias (Hyperbolic Tangent functions are used as Fi’s for this algorithm, as mentioned earlier). The output of the first hidden layer is then passed on the next layer of hidden units, until it reaches the last layer of hidden units, at which point the data is fed into the layer of output units. While training the neural network, a gradient descent algorithm is used. Basically, an initial guess is made for the network weights, and upgraded each times using a small step size. The algorithm iterates for consecutive network weights, and stops when it converges. If the data is linearly separable, the algorithm will converge to the best possible solution.
In order to stay consistent with the previous problem, the same Iris data set was used for this problem. This data was divided into two sets, and 70% of samples were used as training data, and the remaining 30% of samples were used as test data. (The Iris data set consists of 150 samples total.)The number of hidden units was set to the default value of 7, and the following results were obtained.

[image: image13.jpg]Classification error

05

045

04

035

03

025

02

015

01

——Testset
—&— Training set

5 10
Number of hyperpararmeter updates

15

Figure 2 Classification Error vs. # of Hyperparameter Updates (Hidden Units = 7)
The same algorithm was then run a varying number of hidden units in order to see a trend in the classification error. The following results were obtained:

[image: image14.jpg]Classification error

055

05

045

04

035

—+—Testset
—&— Training set

4 [[0 12 14
Number of hyperparameter updates

16

Figure 3 Classification Error vs. # of Hyperparameter Updates (Hidden Units = 1)
[image: image15.jpg]Classification error

06

055

05

045

04

035

03

025

——Testset
—&— Training set

4 6 [10 12
Number of hyperpararmeter updates

14

Figure 4 Classification Error vs. # of Hyperparameter Updates (Hidden Units = 3)
[image: image16.jpg]Classification error

04

035

03

025

02

—+—Testset
—&— Training set

4 6 [10
Number of hyperpararmeter updates

12

Figure 5 Classification Error vs. # of Hyperparameter Updates (Hidden Units = 5)
[image: image17.jpg]Classification error

05

045

04

035

03

025

02

015

01

——Testset
—&— Training set

4 6 [10 12 14
Number of hyperpararmeter updates

Figure 6 Classification Error vs. # of Hyperparameter Updates (Hidden Units = 9)
From the series of plots above, it is clear that the classification error decreases as the number of hidden units is increased. However, the time taken to run the algorithm, and allowing it to converge, is also significantly longer. Overall, the classification error for the test data is approximately 30%, and 12% for training data.

Case 2: Support Vector Machine Classifier

References:
· http://weka.sourceforge.net/wekadoc/index.php/Main_Page

· http://www.cs.waikato.ac.nz/ml/weka/
Support Vector Machines (SVM) are very similar to multi-layer neural networks. It performs classification by constructing an N-dimensional hyperplane that separates the data into 2 sets. SVMs implement an alternative method for training, where the network weights are found by solving a quadratic programming problem with linear constraints. In Neural Networks, the weights are found by solving a non-convex, unconstrained minimization problem. (Note: A 2 layer perceptron neural network is equivalent to an SVM classifier which implements a sigmoid kernel function.)

To implement a Support Vector Machine Classifier, the WEKA workbench was used. WEKA is a collection of visualization tools and algorithms for data analysis and modeling with a user-friendly graphical interface. Weka 3 is a Java-based version. The advantages of WEKA are that it is freely available using the GNU General Public License, portable (since it is implemented in Java), contains various methods of data processing and modeling, and it is easy to use. It currently supports preprocessing, clustering, classification, visualization and feature selection. The data can be important from a single file or database. For the purposes of this assignment, the Explorer interface was used, which is separated into different panels for the previously listed tasks. The ‘Preprocess’ tab allows the user to select the data file (Arff data files were used in this case), and the ‘Classify’ tab allows them to apply classification and regression algorithms to the chosen dataset. (All the classifiers presented in this assignment, with the exception of the Parzen Window, can be simulated on WEKA). Again, the preloaded Iris data set was used for this assignment. In order to probe the SVM classifier, the weka.classifiers.functions.SMO was used. To split the data into 2 sets, the ‘Percentage Split’ option was used. The chosen classifier is then evaluated on how well it predicts a certain percentage of the data which is set aside for testing. Once these options have been set, use the ‘Start’ button to initiate the learning process. Once complete, the output area in the Classifier panel will display the results from training and testing.
Command to Run SMO classifier:

weka.classifiers.functions.SMO -C 1.0 -E 1.0 -G 0.01 -A 250007 -L 0.0010 -P 1.0E-12 -N 0 -V -1 -W 1
In order to keep the training and test data sets consistent with the neural network experiment, the percentage split was set to be 70% for training set, and remainder for test set. Since there are 3 classes in the Iris dataset, and WEKA implements a Binary SMO, three iterations of SMO were conducted such that combinations of the three classes were covered. The following results were obtained:
	Classifier for classes:
	 Iris-setosa, Iris-versicolor

	BinarySMO
	

	Machine linear:
	 showing attribute weights, not support vectors.

	
	

	
	 0.6829 * (normalized) sepallength

	
	 + -1.523 * (normalized) sepalwidth

	
	 + 2.2034 * (normalized) petallength

	
	 + 1.9272 * (normalized) petalwidth

	
	 - 0.7091

	
	

	Number of kernel evaluations:
	 352 (70.32% cached)

	Classifier for classes:
	 Iris-setosa, Iris-virginica

	BinarySMO
	

	Machine linear:
	 showing attribute weights, not support vectors.

	
	

	
	 0.5886 * (normalized) sepallength

	
	 + -0.5782 * (normalized) sepalwidth

	
	 + 1.6429 * (normalized) petallength

	
	 + 1.4777 * (normalized) petalwidth

	
	 - 1.1668

	
	

	Number of kernel evaluations:
	 284 (68.996% cached)

	Classifier for classes:
	 Iris-versicolor, Iris-virginica

	BinarySMO
	

	Machine linear:
	 showing attribute weights, not support vectors.

	
	

	
	 0.3176 * (normalized) sepallength

	
	 + -0.863 * (normalized) sepalwidth

	
	 + 3.0543 * (normalized) petallength

	
	 + 4.0815 * (normalized) petalwidth

	
	 - 4.5924

	
	

	Number of kernel evaluations:
	 453 (61.381% cached)

Table 4 Summary of Results

	Time taken to build model
	0.3 seconds
	

	Correctly Classified Instances
	43
	95.5556 %

	Incorrectly Classified Instances
	2
	 4.4444 %

	Kappa statistic
	0.9331
	

	Mean absolute error
	
	0.2321

	Root mean squared error
	0.2897
	

	Relative absolute error
	
	52.19 %

	Root relative squared error
	61.4178 %
	

	Total Number of Instances
	45
	

Table 5 Confusion Matrix

	a
	b
	c
	(
	(
	Classified As

	14
	0
	0
	a
	=
	Iris-setosa

	0
	16
	0
	b
	=
	Iris-versicolor

	0
	2
	13
	c
	=
	Iris-virginica

Comparison:

From a theoretical standpoint, ANNs sometimes have multiple local minima since samples are rarely linearly separable in practice (this holds true for Iris data also). This means that back-propagation methods, as used in this assignment, only converge to locally optimal solutions. However, the solution to an SVM is always global and unique, and its computational complexity does not depend on the dimensions of the input data.

Examining the results from the two classifiers on the same dataset, the SVM classifier only classifies two instances incorrectly, yielding a classification error of 4.44%. However, the Neural Network approach is significantly worse, yielding a classification error of 10% on training data, and 30% on test data. Also, the SVM classifier only took 0.3 seconds to build the model and classify all data samples. Overall, the SVM classifier seems to have more advantages compared to the neural networks classifier.
Question 3

Case 1: Parzen Window Technique

References:
· http://www.soe.ucsc.edu/research/compbio/genex/genexTR2html/node11.html

· http://rii.ricoh.com/~stork/DHSch4part1.ppt

· http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=17450 &objectType=FILE
Parzen Windows Classification is a non-parametric density estimation technique, also used for classification of data. Given a particular kernel function, this method approximates the distribution of a given training set using a linear combination of kernels centered on the observed points. For the class with the maximal posterior probability, a test point is assigned. This algorithm is similar to that of SVMs, discussed in the previous section. The Parzen Window technique can also be compared to the k-nearest neighbor technique, which will be discussed shortly. In this method, instead of finding the k nearest neighbors of the test point and labeling the test point with the weighted majority, we consider all the points in the voting scheme and assign their weights according to the specified kernel function. For example, when using Gaussian kernels, the weight of a point will decrease exponentially with the square of the distance.
In order to use the Parzen Window technique implemented in MATLAB, the user has to first specify a dataset. Staying consistent with the overall assignment, we select the Iris dataset once again. Use 70% of the data as the training set, and the remaining 30% as test set. In addition, the user also needs to specify a value for σ. The σ represents the width of the Gaussian curve, which is used to determine weights of points relative to the test point. In order to optimize the performance of this algorithm, the value of σ was chosen empirically. The user can also choose how many times they want to repeat this process, in order to obtain a good average performance. The number of iterations can be set through the variable ‘nbite’. The optimal value of σ was empirically found to be 3, and nbite was chosen to be 1000, yielding a Performance of 72% on average.
Case 2: K-Nearest Neighbor Technique and Nearest Neighbor Technique

Reference:
· http://en.wikipedia.org/wiki/Nearest_neighbor_(pattern_recognition)
· http://www.cse.msu.edu/~cse802/
The K-Nearest Neighbor (KNN) technique is used to classify objects based on the closest training samples in the given feature space. KNN is approximated locally, and all computation is deferred until the classification stage. It is one of the simplest pattern recognition algorithms. An object is classified based on the majority vote among its k nearest neighbors. If k is 1, then the test point is assigned to the class of its nearest neighbor. The neighbors for a test point are chosen from a set of points for which the correct classification is already known. This is determined from the training phase of KNN. The Euclidean distance is usually used to compare distance between neighboring points.

The training phase of KNN involves storing the feature vectors and class labels of the training samples. In the classification phase, the test sample is represented as a vector in the feature space, and distances from this new vector to all the previously stored vectors are computed. The k closest sample points are selected from this set. From here, the most common class among the k nearest neighbors is used to classify the new vector into a given class. The disadvantage to this method is that classes with more frequent samples are more dominant. However, for this assignment, we are using the Iris dataset which has 50 data samples for each of the 3 classes. The optimal choice of k is dependent on the dataset. Larger values of k tend to reduce the error in classification, but make the separation regions between classes less distinct.
The simplest version of this algorithm, which involves calculating the distances between the test samples to all the stored feature vectors, is computationally intensive when the size of the training set is large. Note that as the total number of data points in a particular dataset approaches infinity, the KNN algorithm guarantees a misclassification rate of at most twice the Bayes error rate.

To run the MATLAB version of this algorithm, the user needs to specify a dataset. For this assignment, it was chosen to be the Iris dataset once again. The algorithm then uses the odd-indexed data as the training set, and the even-indexed data as the test set, and computes the recognition rates for the KNN algorithm for k ranging from 1 to 15. When k = 1, this algorithm implements the nearest neighbor method, as mentioned previously. For the remaining values of k, the algorithm implements the k-nearest neighbor method. The following results were obtained:

Table 6 Summary of Results for KNN Algorithm on Iris Dataset
	Size of design set (odd-indexed data):
	75

	Size of test set (even-indexed data):
	75

	

	Recognition rates as K varies:

	
1-NNR
	===>
	1 - 3/75
	=
	96.00%.

	
2-NNR
	===>
	1 - 2/75
	=
	97.33%.

	
3-NNR
	===>
	1 - 2/75
	=
	97.33%.

	
4-NNR
	===>
	1 - 4/75
	=
	94.67%.

	
5-NNR
	===>
	1 - 1/75
	=
	98.67%.

	
6-NNR
	===>
	1 - 2/75
	=
	97.33%.

	
7-NNR
	===>
	1 - 1/75
	=
	98.67%.

	
8-NNR
	===>
	1 - 3/75
	=
	96.00%.

	
9-NNR
	===>
	1 - 1/75
	=
	98.67%.

	
10-NNR
	===>
	1 - 7/75
	=
	90.67%.

	
11-NNR
	===>
	1 - 6/75
	=
	92.00%.

	
12-NNR
	===>
	1 - 6/75
	=
	92.00%.

	
13-NNR
	===>
	1 - 4/75
	=
	94.67%.

	
14-NNR
	===>
	1 - 5/75
	=
	93.33%.

	
15-NNR
	===>
	1 - 6/75
	=
	92.00%.

[image: image18.jpg]Recognition rates (%)

99

98

97

96

95

94

93

92

91

90

Recognition rates of Is data using K-NNR

15

Figure 7 Recognition Rates vs. Number of Neighbors for KNN Algorithm in Iris Dataset

Comparison:

First we compare the two types of algorithms (Parzen Window and k-nearest neighbors) from a theoretical standpoint. The Parzen Window technique relies on kernel-based methods, and requires a large number of samples. Also, the data points in the features space need to be stored, so that distances from the test points can be calculated. Therefore, the approximation of the probability density could be slow if the number of data points is fairly large. To avoid this, we can use fewer kernels and use a mixture of Gaussians (adapting to the data).
Similarly, the k-Nearest Neighbors algorithm also has drawbacks. For example, the resulting estimate of the probability density using this algorithm is not a true density function. All data point in the feature space need to be stored for this algorithm as well, even though only k of the closest neighbors to the test point will be considered for classification. That said, computing the closest neighbors for each test point is time consuming, and efficient algorithms are required for large datasets.

Examining the numerical results, we see that the k-Nearest Neighbor Algorithm and the Nearest Neighbor Algorithm have a significantly better classification rate, compared to the 72% performance rate of the Parzen Windows technique. The recognition rate for the Nearest Neighbor Algorithm (k = 1) is 96%. The recognition rate for the k-Nearest Neighbor Algorithm varies depending on k, and the optimal value for k is dependent on the dataset. For this dataset, the optimal values for k occur at 5, 7 and 9, and correspond to a recognition rate of approximately 99%. The recognition rates for the even values of k are lower than for the odd values because ties may arise, which are left unresolved when k is even. Overall, the most effective classifier of the 3 is the k-Nearest Neighbor Algorithm, since it achieves the highest recognition rate, for a relatively small value of k.
APPENDIX
Part I

The lda.m file computes w0 the original way. The lda_2.m file computer w0 by setting SW as the identity matrix in the solution. Both files are called on the Iris data set, resulting in the output shown in Question1 of this report. The individual code contains comments explaining its own functionality.
Lda.m

function [newSample, discrim_vec] = lda2(sample, discrim_vec_n)

%LDA Linear discriminant analysis

%
Usage:

%
[NEWSAMPLE, DISCRIM_VEC] = lda(SAMPLE, DISCRIM_VEC_N)

%
SAMPLE: Sample data with class information

%

(Each row of SAMPLE is a sample point, with the

%

last column being the class label ranging from 1 to

%

no. of classes.)

%
DISCRIM_VEC_N: No. of discriminant vectors

%
NEWSAMPLE: new sample after projection

%

%
Reference:

%
J. Duchene and S. Leclercq, "An Optimal Transformation for

%
Discriminant Principal Component Analysis," IEEE Trans. on

%
Pattern Analysis and Machine Intelligence,

%
Vol. 10, No 6, November 1988

% ====== Initialization

data_n = size(sample, 1);

feature_n = size(sample,2)-1;

featureMatrix = sample(:, 1:end-1);

classLabel = sample(:, end);

[diffClassLabel, classSize] = countele(classLabel);
%Find all distinct classes, and how many

% samples of each class
class_n = length(diffClassLabel);

% Total number of classes
sampleMean = mean(featureMatrix);

% Mean of all features
% ====== Compute B and W

% ====== B: between-class scatter matrix

% ====== W: within-class scatter matrix

% MMM = \sum_k m_k*mu_k*mu_k^T

MMM = zeros(feature_n, feature_n);

for i = 1:class_n,

index = find(classLabel==diffClassLabel(i));

classMean = mean(featureMatrix(index, :));

MMM = MMM + length(index)*classMean'*classMean;

end

W = featureMatrix'*featureMatrix - MMM;

% Calculate Within-Class scatter matrix
B = MMM - data_n*sampleMean'*sampleMean;
% Calculate Between-Class scatter matrix
% ====== Find the best discriminant vectors

invW = inv(W);

Q = invW*B;

D = [];

for i = 1:discrim_vec_n,

[eigVec, eigVal] = eig(Q);

[maxEigVal, index] = max(abs(diag(eigVal)));

D = [D, eigVec(:, index)];
% Each col of D is a eigenvector

Q = (eye(feature_n)-invW*D*inv(D'*invW*D)*D')*invW*B;

end

newSample = [featureMatrix*D(:,1:discrim_vec_n) classLabel];

discrim_vec = D;

%---

function selfdemo

% ====== Self demo using IRIS dataset

% ====== 1. Plot IRIS data after LDA for dimension reduction to 2D

load iris.dat

% Loads Iris.dat data file
[data, discrim_vec] = feval(mfilename, iris);

% Extract features and class information
index1 = find(iris(:,5)==1);

% Find all Class 1 points
index2 = find(iris(:,5)==2);

% Find all Class 2 points
index3 = find(iris(:,5)==3);

% Find all Class 3 points
figure;

plot(data(index1, 1), data(index1, 2), '*', ...

 data(index2, 1), data(index2, 2), 'o', ...

 data(index3, 1), data(index3, 2), 'x');

% Plot Iris data with first two features
legend('Class 1', 'Class 2', 'Class 3');

title('LDA projection of IRIS data onto the first 2 discriminant vectors');

looError = looknn([data(:, 1:2) iris(:, end)]);

% Leave-One-Out Classification Error Count
xlabel(['Leave-one-out misclassification count = ', int2str(looError)]);

axis equal; axis tight;

figure;

plot(data(index1, 3), data(index1, 4), '*', ...

 data(index2, 3), data(index2, 4), 'o', ...

 data(index3, 3), data(index3, 4), 'x');

% Plot Iris data with last two features
legend('Class 1', 'Class 2', 'Class 3');

title('LDA projection of IRIS data onto the last 2 discriminant vectors');

looError = looknn([data(:, 3:4) iris(:, end)]);

% Leave-One-Out Classification Error Count
xlabel(['Leave-one-out misclassification count = ', int2str(looError)]);

axis equal; axis tight;

% ====== 2. Leave-one-out errors after using LDA for dimension reduction

load iris.dat;

% Load Iris.dat data file
dataNum = size(iris, 1);

fprintf('Leave-one-out analysis:\n');

fprintf('\tFull data:\n');

wrong = looknn(iris);

% Leave-One-Out Classification Error Count
correct = size(iris, 1) - wrong;

% Calculate total correct classifications
fprintf('\t\tLOO error count = %g\n', wrong);

fprintf('\t\tRecognition rate = %g/%g = %5.2f%%\n', correct, dataNum,...

correct/dataNum*100);

newdata = lda(iris);

% Reload Iris data

for n = 4:-1:1,

% Reduce dimensions of data from 4 to 1

fprintf('\tPartial data after LDA (dimension = %g):\n', n);

wrong = looknn([newdata(:, 1:n) newdata(:, end)]);
% Leave-One-Out Error on reduced data

correct = size(iris, 1) - wrong;

fprintf('\t\tLOO error count = %g\n', wrong);

fprintf('\t\tRecognition rate = %g/%g = %5.2f%%\n', correct, dataNum,...

correct/dataNum*100);

end

lda_2.m

function [newSample, discrim_vec] = lda2_b(sample, discrim_vec_n)

%LDA Linear discriminant analysis

%
Usage:

%
[NEWSAMPLE, DISCRIM_VEC] = lda(SAMPLE, DISCRIM_VEC_N)

%
SAMPLE: Sample data with class information

%

(Each row of SAMPLE is a sample point, with the

%

last column being the class label ranging from 1 to

%

no. of classes.)

%
DISCRIM_VEC_N: No. of discriminant vectors

%
NEWSAMPLE: new sample after projection

%

%
Reference:

%
J. Duchene and S. Leclercq, "An Optimal Transformation for

%
Discriminant Principal Component Analysis," IEEE Trans. on

%
Pattern Analysis and Machine Intelligence,

%
Vol. 10, No 6, November 1988

% ====== Initialization

data_n = size(sample, 1);

feature_n = size(sample,2)-1;

featureMatrix = sample(:, 1:end-1);

classLabel = sample(:, end);

[diffClassLabel, classSize] = countele(classLabel);

class_n = length(diffClassLabel);

sampleMean = mean(featureMatrix);

% ====== Compute B and W

% ====== B: between-class scatter matrix

% ====== W: within-class scatter matrix

% MMM = \sum_k m_k*mu_k*mu_k^T

MMM = zeros(feature_n, feature_n);

for i = 1:class_n,

index = find(classLabel==diffClassLabel(i));

classMean = mean(featureMatrix(index, :));

MMM = MMM + length(index)*classMean'*classMean;

end

W = featureMatrix'*featureMatrix - MMM;

W = eye(size(W,1),size(W,2));

% Only difference between lda.m and lda_2.m
% Sets W (within scatter matrix) to be the

% identity matrix

B = MMM - data_n*sampleMean'*sampleMean;

% ====== Find the best discriminant vectors

invW = inv(W);

Q = invW*B;

D = [];

for i = 1:discrim_vec_n,

[eigVec, eigVal] = eig(Q);

[maxEigVal, index] = max(abs(diag(eigVal)));

D = [D, eigVec(:, index)];
% Each col of D is a eigenvector

Q = (eye(feature_n)-invW*D*inv(D'*invW*D)*D')*invW*B;

end

newSample = [featureMatrix*D(:,1:discrim_vec_n) classLabel];

discrim_vec = D;

%---

function selfdemo

% ====== Self demo using IRIS dataset

% ====== 1. Plot IRIS data after LDA for dimension reduction to 2D

load iris.dat

[data, discrim_vec] = feval(mfilename, iris);

index1 = find(iris(:,5)==1);

index2 = find(iris(:,5)==2);

index3 = find(iris(:,5)==3);

figure;

plot(data(index1, 1), data(index1, 2), '*', ...

 data(index2, 1), data(index2, 2), 'o', ...

 data(index3, 1), data(index3, 2), 'x');

legend('Class 1', 'Class 2', 'Class 3');

title('LDA projection of IRIS data onto the first 2 discriminant vectors');

looError = looknn([data(:, 1:2) iris(:, end)]);

xlabel(['Leave-one-out misclassification count = ', int2str(looError)]);

axis equal; axis tight;

figure;

plot(data(index1, 3), data(index1, 4), '*', ...

 data(index2, 3), data(index2, 4), 'o', ...

 data(index3, 3), data(index3, 4), 'x');

legend('Class 1', 'Class 2', 'Class 3');

title('LDA projection of IRIS data onto the last 2 discriminant vectors');

looError = looknn([data(:, 3:4) iris(:, end)]);

xlabel(['Leave-one-out misclassification count = ', int2str(looError)]);

axis equal; axis tight;

% ====== 2. Leave-one-out errors after using LDA for dimension reduction

load iris.dat;

dataNum = size(iris, 1);

fprintf('Leave-one-out analysis:\n');

fprintf('\tFull data:\n');

wrong = looknn(iris);

correct = size(iris, 1) - wrong;

fprintf('\t\tLOO error count = %g\n', wrong);

fprintf('\t\tRecognition rate = %g/%g = %5.2f%%\n', correct, dataNum,...

correct/dataNum*100);

newdata = lda_2(iris);

for n = 4:-1:1,

fprintf('\tPartial data after LDA (dimension = %g):\n', n);

wrong = looknn([newdata(:, 1:n) newdata(:, end)]);

correct = size(iris, 1) - wrong;

fprintf('\t\tLOO error count = %g\n', wrong);

fprintf('\t\tRecognition rate = %g/%g = %5.2f%%\n', correct, dataNum,...

correct/dataNum*100);

end

countele.m

function [sorted_element, element_count] = countele(in)

%COUNTELE Count elements in a vector.

%
Type "countele" for a self demo.

%
Roger Jang, 3-27-1997

[m,n] = size(in);

in1 = sort(in(:)');

in1 = [in1 in1(length(in1))+1];

index = find(diff(in1) ~= 0);

sorted_element = in1(index);

element_count = diff([0, index]);

if n == 1,

sorted_element = sorted_element';

% Each distinct class

element_count = element_count';

% Number of samples per class
end
looknn.m

function [misclassify, index, nearestIndex] = looknn(sampledata, k, option)

%LOOKNN Leave-one-out error (misclassification count) of KNN

%

%
Usage:

%
[MISCLASSIFY, INDEX, NEAREST_SAMPLE_INDEX] = LOOKNN(SAMPLEDATA, K, OPTION)

%

%
MISCLASSIFY: No. of misclassification points

%
INDEX: Index of misclassified points

%
NEAREST_SAMPLE_INDEX: Nearest sample index of the misclassified points

%
K: The "k" in k-nearest neighbor rule

%
SAMPLEDATA: Sample data set, with the last column being

%

the desired label

%
OPTION = 0 for small data set (vectorized operation based)

%
 = 1 for large data set (for-loop based)

if nargin<3,

if size(sampledata, 1) <= 1000,

option=0;
% Small data set, use vectorized operation

else

option=1;
% Large data set, use for-loop operation

end

end

if nargin<2, k=1; end

featureNum = size(sampledata, 2)-1;

sampleNum = size(sampledata, 1);

input = sampledata(:, 1:featureNum);

desired = sampledata(:, featureNum+1);

classLabel = countele(desired);

classNum = length(classLabel);

computed = zeros(size(desired));

nearestSampleIndex = zeros(size(desired));

if option == 0,
% vectorized operation; suitable for small dataset

distmat = vecdist(input);

distmat(1:(sampleNum+1):sampleNum^2) = inf;
% Set diagonal elements to inf

% The following is extracted from knn.m

[junk, nearestSampleIndex] = sort(distmat, 1);

% knnmat(i,j) = class of i-th nearest point of j-th input vector

knnmat = reshape(desired(nearestSampleIndex(1:k,:)), k, sampleNum);

% classCount(i,j) = count of class-i points within j-th input vector's neighborhood

classCount = zeros(classNum, sampleNum);

for i = 1:sampleNum,

[sortedElement, elementCount] = countele(knnmat(:,i));

classCount(sortedElement, i) = elementCount;

end

[junk, computed] = max(classCount, [], 1);

computed = computed';

else

% for-loop version; suitable for large dataset

nearestSampleIndex = zeros(1, sampleNum);

for i = 1:sampleNum,

looData = sampledata;

looData(i, :) = [];

[computed(i), junk, tmp] = knn(looData, sampledata(i, :), k);

nearestSampleIndex(i) = tmp(1);

if nearestSampleIndex(i)>=i,

nearestSampleIndex(i)=nearestSampleIndex(i)+1;

end

% ====== on-line display

%
fprintf('%g/%g ---> ', i, sampleNum);

%
if computed(i)==desired(i),

%

fprintf('correct\n');

%
else

%

fprintf('wrong\n');

%
end

end

end

index = find(desired~=computed);

misclassify = length(index);

nearestIndex = nearestSampleIndex(1, index)';
vectdist.m

function distmat = vecdist(mat1, mat2)

% VECDIST Distance between two set of vectors

%
VECDIST(MAT1, MAT2) returns the distance matrix between two

%
set of vectors MAT1 and MAT2. The element at row i and column j

%
of the return matrix is the Euclidean distance between row i

%
of MAT1 and row j of MAT2.

%
Roger Jang, Sept 24, 1996.

if nargin == 1,

mat2 = mat1;

end

[m1, n1] = size(mat1);

[m2, n2] = size(mat2);

if n1 ~= n2,

error('Matrices mismatch!');

end

distmat = zeros(m1, m2);

if n1 == 1,

distmat = abs(mat1*ones(1,m2)-ones(m1,1)*mat2');

elseif m2 >= m1,

for i = 1:m1,

distmat(i,:) = sqrt(sum(((ones(m2,1)*mat1(i,:)-mat2)').^2));

end

else

for i = 1:m2,

distmat(:,i) = sqrt(sum(((mat1-ones(m1,1)*mat2(i,:))').^2))';

end

end
PART II

Shown below is the code used to implement the Neural Networks classifier. The demo_script.m file is run first, which allows the user to choose the dataset and the number of hidden units. Using this information, nc_main.m is called to train the network. The nc_main.m function returns a variable ‘results’, whose subparts can be accessed individually and plotted as shown. The nc_main.m function terminates once the convergence test is satisfied (see the internal function check_convergence in nc_main.m). These are the two main source files needed to implement the neural networks classifier, but a lot of other supplementary files are needed. These can be downloaded from the reference link given earlier in the report. The code is explained in the comments within the scripts.
There is no source code provided for the Support Vector Machine classifier portion of this question, because the WEKA is a pre-packaged software. It can be downloaded as a whole from the reference link given earlier in the report. Question 2 walks the reader through the basic functionality of WEKA, once it has been downloaded.

demo_script.m
% A script that shows the usage of the neural classifier for multiple

% classes. The data set used is the well known Iris data.

% Load the iris data:

load irisdata

% Set the number of hidden units

Nh = 9;

% Train the network

disp('Network training, this might take a couple of minutes ...')

results = nc_main(x,t,x_test,t_test,Nh);

% Plot the cross-entropy error

figure(1)

x_axis = 0:length(results.Etest)-1;

plot(x_axis,results.Etest,'r*-',x_axis,results.Etrain,'bo-')

xlabel('Number of hyperparameter updates')

ylabel('Average cross-entropy error')

legend('Test set','Training set')

% Plot the classification error

figure(2)

plot(x_axis,results.Ctest,'r*-',x_axis,results.Ctrain,'bo-')

xlabel('Number of hyperparameter updates')

ylabel('Classification error')

legend('Test set','Training set')

% Plot the evolution of the hyperparameters

figure(3)

subplot(2,1,1)

plot(x_axis,results.alpha,'b*-')

xlabel('Number of hyperparameter updates')

ylabel('alpha value')

subplot(2,1,2)

plot(x_axis,results.beta,'b*-')

xlabel('Number of hyperparameter updates')

ylabel('beta value')

nc_main.m

function results = nc_main(x,t,x_test,t_test,Nh,state);

%NC_MAIN Neural classifier main program

% Main program for neural network training

% This program implements classification using the SOFTMAX function

%

% The network is trained using the BFGS optimization algorithm

% using soft line search to determine step lengths.

% The regularization is adapted with MacKays Bayesian MLII scheme

% with only one regularization parameter for all weights.

% Outlier probability is also implemented using Bayesian MLII estimates and

% Brent's method for fitting quadratic functions

%

% This program is based on an older neural classifier programmed by

% Morten With Pedersen in February 1997. The following has been added

% *Adaptive regularization with MacKays evidence scheme. 2001 Siggi

% *Gauss-Newton Hessian matrix evaluation. 2001 Siggi

% *Outlier model based on Gaussian approximation. 2001 Siggi

% *Use BFGS algorithm for weigth optimization. 2001 Siggi

%

% The BFGS program was written by Hans Bruun Nielsen at IMM, DTU.

%

% results = nc_main_outlier(x,t,x_test,t_test,Nh,state);

%

% Inputs:

% x : Matrix with training examples as rows

% t : Column vector with class labels (1 to #Classes)

% x_test : Matrix with test examples as rows

% t_test : Column vector with class labels (1 to #Class)

% Nh : Number of hidden units

% state : Intger random seed for weight initialization (Optional)

%

% Output:

% results : Struct variable with all information on the network

% .Ctest : A vector representing the classification error

% on the test set at each hyperparameter update

% .Ctrain : A vector representing the classification error

% on the training set at each hyperparameter update

% .Etest : A vector representing the cross-entropy error

% on the test set at each hyperparameter update

% with beta set to 0 and averaged over test examples

% .Etrain : A vector representing the cross-entropy error

% on the training set at each hyperparameter update

% with beta set to 0 and averaged over training examples

% .alpha : A vector representing the value of the alpha

% hyperparameter updates

% .beta : A vector representing the value of the beta

% hyperparameter updates

% .gamma : A vector representing the number of "well determined"

% weights at each hyperparameter update

% .cputime : The training time in seconds

% .Nh : The number of hidden units

% .x : The normalized input patterns for training where

% x = (x_argin - repmat(mean_x,Ntrain,1))./repmat(std_x,Ntrain,1)

% .t : The target class labels for training

% .x_test : The normalized input patterns for testing

% x_test = (x_argin_test - repmat(mean_x,Ntest,1))./repmat(std_x,Ntest,1)

% .t_test : The target class labels for testing

% .mean_x : The mean subtracted from input patterns for normalization

% .std_x : The scaling of the input patterns for normalization

% .Poutlier : The outlier probability of each example in the training set where

% a value higher than 0.5 indicates that the examples is an outlier

% .p_train : The conditional class probability for all training examples

% and classes using the outlier probability

% .p_test : The conditional class probability for all test examples

% and classes using the outlier probability

% .t_est_train : The estimated class labels for the training examples

% .t_est_test : The estimated class labels for the test examples

% .state : The random seed used for initializing the weights

% .Wi : The input-to-hidden weight matrix

% .Wo : The hidden-to-output weight matrix

%

% Sigurdur Sigurdsson 2002, DSP, IMM, DTU.

%%%

% Initialization of various parameters %

%%%

% Scale and remove the mean of the input patterns

[x,x_test,results.mean_x,results.std_x] = nc_normalize_data(x,x_test);

% Determine the number of inputs and outputs

Ni = size(x,2);

No = max(t);

% Determine the number of training and test examples

Ntrain = length(t);

Ntest = length(t_test);

% Random seed for the weight initialization

if nargin < 6

 state = sum(100*clock);

end

randn('state',state);

% Initial hyperparameter values, small values

par.alpha = Ni;

par.beta = 0;

% Parameters for network convergence;

% Number of hyperparameter updates

max_count = 100

% Initialize network weights

[Wi,Wo] = nc_winit(Ni,Nh,No);

% Collect data and parameters for training

par.x = x;

par.t = t;

par.Ni = Ni;

par.No = No;

par.Nh = Nh;

% Options for the BFGS algorithm and soft linesearch

% see the ucminf.m file for detailes

opts = [1 1e-4 1e-8 1000];

% Make a weight vector from the two layer matrices

W = [Wi(:);Wo(:)];

%%%

% Train the network %

%%%

% Start taking the training time

t_cpu = cputime;

% Initialize the counter for hyperparameter update

count = 0;

% Train the network until parameters have converged

STOP = 0;

while (STOP==0)

 % Increment the counter

 count = count+1;

 % Training of the network weights

 W = ucminf('nc_network',par,W,opts);

 %%%

 % Save some results of hyperparameters update %

 %%%

 % Convert the weights from vector to matrices

 [Wi,Wo] = nc_W2Wio(W,Ni,Nh,No);

 % Classification error for test and training

 results.Ctest(count) = nc_err_frac(Wi,Wo,par.beta,x_test,t_test);

 results.Ctrain(count) = nc_err_frac(Wi,Wo,par.beta,x,t);

 % Mean square error for test and training

 results.Etest(count) = 2/Ntest*nc_cost(Wi,Wo,0,0,x_test,t_test);

 results.Etrain(count) = 2/Ntrain*nc_cost(Wi,Wo,0,0,x,t);

 % Hyperparameters

 results.alpha(count) = par.alpha;

 results.beta(count) = par.beta;

 % Model selection

 %results.log_evidence(count) = nc_evidence(Wi,Wo,par.alpha,par.beta,x,t);%

 %%%

 % Save the old hyperparameters

 par.old_alpha = par.alpha;

 par.old_beta = par.beta;

 % Update the estimated outlier probability

 par.beta = nc_beta(W,par);

 % Adapt the regularization parameters

 [par.alpha,results.gamma(count)] = nc_alpha(W,par);

 % Check for convergence of hyperparameters (internal function)

 STOP = check_convergence(par,max_count,count);

end

%%%

% Save some results from the training %

%%%

% Time used for training

results.cputime = cputime-t_cpu;

% Number of hidden units

results.Nh = Nh;

% The data set; inputs and labels for both test and training set

results.x = x;

results.t = t;

results.x_test = x_test;

results.t_test = t_test;

% The outlier probability of the training examples

results.Poutlier = nc_outlier_probs(Wi,Wo,par.beta,x,t);

% The output probability of the training and test set for all classes

[results.p_train,results.t_est_train] = nc_output_probs(Wi,Wo,par.beta,x);

[results.p_test,results.t_est_test] = nc_output_probs(Wi,Wo,par.beta,x_test);

% Save the random state

results.state = state;

% Save the weights

results.Wi = Wi;

results.Wo = Wo;

%%%

% Internal functions %

%%%

function STOP = check_convergence(par,max_count,count)

% Check if the hyperparameters have converged

% Stop if exceeding maximum number of iteration

if (count >= max_count)

 STOP = 1;

 return;

end

% Check the relative changes of the hyperparameters

alpha_diff = abs(par.alpha-par.old_alpha)/par.alpha;

if par.beta == 0

 beta_diff = abs(par.beta-par.old_beta);

else

 beta_diff = abs(par.beta-par.old_beta)/par.beta;

end

% Determine the convergence

if (alpha_diff < 1e-5) & (beta_diff < 1e-5)

 STOP = 1;

else

 STOP = 0;

end

Question 3

The Parzen Window Classifier is initiated by the test_parzen.m file. This file allows the user to define all the necessary parameters, such as the dataset and sigma value, and then calls a C file, Parzen_classif.c, to classify the test data based on the training set provided. The C function returns the estimated labels of all the test data, and these are compared to the actual data labels to calculate performance.

The k-Nearest Neighbor Algorithm is initiated by the knn.m file, shown after the Parzen Window classifier files below. The knn.m file also uses countele.m and vectdist.m to calculate the number of elements in a particular vector, and the distance between two points. These MATLAB files were shown and explained in the Appendix for Question 1. The knn.m file find the classification error for different values of k ranging from 1 to 15. Both sets of code are explained in the comments within the scripts.

Test_parzen.m

load irisdata

% Loads Iris data

[d , N] = size(X);

% Determine the size of the data file

% d - # of columns of features + class vector (not used)

% N – number of samples

n1 = round(0.7*N);

% Partitions data into 70% training set

n2 = N - n1;

% and 30% test set

nbite = 1000;

% Specifies number of times to iterate test

sigma = 3;

% Width of Gaussian curve, used to determine weights

Perf = zeros(1 , nbite);

% Initialize performance vector

for i=1:nbite

 ind = randperm(length(y));

% Pick a random test value

 ind1 = ind(1:n1);

% Partition into training and test set

 ind2 = ind(n1+1:N);

 Xtrain = X(: , ind1);

% Features of training set

 ytrain = y(ind1);

% Classes of training set

 Xtest = X(: , ind2);

% Features of test set

 ytest = y(ind2);

% Classes of test set

% Classify test data

% Find class labels for all test data using Parzen_classif.c
% Returns the class labels for the test vector

ytest_est = parzen_classif(Xtrain , ytrain , Xtest , sigma);

%Call Parzen_classif.c
 Perf(i) = sum(ytest == ytest_est)/n2;

%Calculate performance for iteration

End

disp(sprintf('Performance = %4.2f' , mean(Perf)))
% Average performance over all iterations

Parzen_classif.c

/* parzen_classif : Returns the estimated Labels ytest [1 x Ntest] given Xtrain data [d x Ntrain] and train label ytrain [1 x Ntrain]

 Usage:

 [ytest , densite] = parzen_classif(Xtrain , ytrain , Xtest , [sigma]);

 Inputs:

 Xtrain Train data (d x Ntrain)

 ytrain Train labels (1 x Ntrain)

 Xtest Test data (d x Ntest)

 sigma Noise Standard deviation of the rbf (default sigma = 1.0)

 Ouputs:

 ytest Estimated labels (1 x Ntest)

 densite Estimated density (m x Ntest) where m denotes the number of class

Reference :
Vincent, P. and Bengio, Y. (2003). Manifold parzen windows. In Becker, S., Thrun, S., and Obermayer, K., editors, Advances in Neural Information Processing Systems 15, Cambridge, MA. MIT Press.

*/

#include <math.h>

#include "mex.h"

void qs(double * , int , int);

void parzen_classif(double * , double * , double * , double , double * , double *, int , int , int , int , double * , double*);

void mexFunction(int nlhs, mxArray *plhs[] , int nrhs, const mxArray *prhs[])

{

double *Xtrain , *ytrain , *Xtest;

double *ytest, *densite;

int d , Ntrain , Ntest , m=0 , i , currentlabel;

double sigma = 1.0;

double *ytrainsorted , *labels;

/*Process Input*/
/* ----- Input 1 ----- */

Xtrain = mxGetPr(prhs[0]);

d = mxGetM(prhs[0]);

Ntrain = mxGetN(prhs[0]);

/* ----- Input 2 ----- */

ytrain = mxGetPr(prhs[1]);

if(mxGetN(prhs[1]) != Ntrain)

{

 mexErrMsgTxt("ytrain must be (1 x Ntrain)");

}

/* ----- Input 3 ----- */

Xtest = mxGetPr(prhs[2]);

if(mxGetM(prhs[2]) != d)

{

 mexErrMsgTxt("Xtest must be (d x Ntest)");

}

Ntest = mxGetN(prhs[2]);

/* ----- Input 4 ----- */

if (nrhs > 3)

{

sigma = (double)mxGetScalar(prhs[3]);

}

/* Determine unique Labels */

ytrainsorted = mxMalloc(Ntrain*sizeof(double));

for (i = 0 ; i < Ntrain; i++)

{

ytrainsorted[i] = ytrain[i];

}

qs(ytrainsorted , 0 , Ntrain - 1);

labels = mxMalloc(sizeof(double));

labels[m] = ytrainsorted[0];

currentlabel = labels[0];

for (i = 0 ; i < Ntrain ; i++)

{

if (currentlabel != ytrainsorted[i])

{

labels = (double *)mxRealloc(labels , (m+2)*sizeof(double));

labels[++m] = ytrainsorted[i];

currentlabel = ytrainsorted[i];

}

}

m++;

/*Create Output*/

/* ----- output 1 ----- */

plhs[0] = mxCreateDoubleMatrix(1 , Ntest , mxREAL);

ytest = mxGetPr(plhs[0]);

plhs[1] = mxCreateDoubleMatrix(m , Ntest , mxREAL);

densite = mxGetPr(plhs[1]);

/*Main Call from External Function*/

parzen_classif(Xtrain , ytrain , Xtest , sigma, ytest ,densite,d,m,Ntrain,Ntest,labels, trainsorted);

mxFree(labels);

mxFree(ytrainsorted);

}

void parzen_classif(double *Xtrain , double *ytrain , double *Xtest , double sigma , double *ytest , double *densite, int d , int m, int Ntrain , int Ntest , double *labels , double *ytrainsorted)

{

int i , j , l , t , id , jd , im , ind;

double temp , res , maxi;

double cte = -0.5/(sigma*sigma), cteprior , epsilon = 10e-50 ;

double *prior;

/* Prior */

prior = mxMalloc(m*sizeof(double));

for (t = 0 ; t < m ; t++)

{

prior[t] = 0.0;

}

for (i = 0 ; i < Ntrain ; i++)

{

for (t = 0 ; t < m ; t++)

{

if (labels[t] == ytrainsorted[i])

{

prior[t]++;

}

}

}

for (t = 0 ; t < m ; t++)

{

prior[t] /= Ntrain;

}

/* Classify */

for (i = 0; i < Ntest ; i++)

{

id = i*d;

im = i*m;

for (j = 0 ; j < Ntrain ; j++)

{

jd = j*d;

 for(t = 0 ; t < m ; t++)

{

if(ytrain[j] == labels[t])

{

ind = t;

}

}

res = 0.0;

for (l = 0 ; l < d ; l++)

{

temp = (Xtest[l + id] - Xtrain[l + jd]);

res += (temp*temp);

}

densite[ind + im] += exp(cte*res) + epsilon;

}

cteprior = 0.0;

for(t = 0 ; t < m ; t++)

{

densite[t + im] *=prior[t];

cteprior += densite[t + im];

}

cteprior = 1.0/cteprior;

ind = 0;

maxi = 0.0;

for(t = 0 ; t < m ; t++)

{

temp = densite[t + im]*cteprior;

densite[t + im] = temp;

if(temp > maxi)

{

maxi = temp;

ind = t;

}

}

ytest[i] = labels[ind];

% Find labels for test data

}

mxFree(prior);

}

void qs(double *array, int left, int right)

{

double pivot;
// pivot element.

int holex;
// hole index.

int i;

holex = left + (right - left)/2;

pivot = array[holex];

 // get pivot from middle of array.

array[holex] = array[left]; // move "hole" to beginning of

holex = left;

 // range we are sorting.

for (i = left + 1 ; i <= right ; i++)

{

if (array[i] <= pivot)

{

array[holex] = array[i];

array[i] = array[++holex];

}

}

if (holex - left > 1)

{

qs(array, left, holex - 1);

}

if (right - holex > 1)

{

qs(array, holex + 1, right);

}

array[holex] = pivot;

}

Knn.m
function [eachClass, ensembleClass, nearestSampleIndex, knnmat] = ...

knn(sampledata, testdata, k)

% KNN
K-nearest neighbor rule for classification

%
Usage:

%
[EACH_CLASS, ENSEMBLE_CLASS, NEAREST_SAMPLE_INDEX] = KNN(SAMPLE, INPUT, K)

%

%
SAMPLE: Sample data set (The last column is the desired class of each

%

sample vector. The values of the last column are assumed to

%

be integers ranging from 1 to N.)

%
INPUT: Test input matrix (each row is an input vector)

%
K: the "k" in "k nearest neighbor"

%
EACH_CLASS: A vector denoting the KNN output class of each input vector

%
NEAREST_SAMPLE_INDEX: Index of SAMPLE that are closest to INPUT

%
ENSEMBLE_CLASS: A scalar denoting the KNN output class of all input

%

vectors that are assumed to be of the same class

%

(A voting mechanism is invoked to determine a scalar value

%

between 1 and N.)

featureNum = size(sampledata,2)-1;

% # of features in data

sampleInput = sampledata(:, 1:featureNum);

% Features for training data
sampleOutput = sampledata(:, featureNum+1);

% Class labels for training data
classLabel = countele(sampleOutput);

% Possible output classes
classNum = length(classLabel);

testNum = size(testdata, 1);

% no. of test input vectors

testInput = testdata(:, 1:featureNum);

% Remove class info from vector
% Euclidean distance matrix between sampleInput and testInput

distmat = vecdist(sampleInput, testInput);

% knnmat(i,j) = class of i-th nearest point of j-th test input vector

% (The size of knnmat is k by testNum.)

[junk, nearestSampleIndex] = sort(distmat, 1);

% The following "reshape" is necessary if k == 1.

knnmat = reshape(sampleOutput(nearestSampleIndex(1:k,:)), k, testNum);

% class_count(i,j) = number of class-i points in j-th test input's neighborhood

% (The size of class_count is classNum by testNum.)

class_count = zeros(classNum, testNum);

for i = 1:testNum,

[sortedElement, elementCount] = countele(knnmat(:,i));

class_count(sortedElement, i) = elementCount;

end

[junk, ensembleClass] = max(sum(class_count, 2));

[junk, eachClass] = max(class_count, [], 1);

eachClass = eachClass';

function selfdemo

load iris.dat

% Load Iris data file

dataNum = size(iris, 1);

% Number of samples in Iris data file

design = iris(1:2:dataNum, :);

% Training set : odd indexes

test = iris(2:2:dataNum, :);

% Test set : even indexes

design_n = size(design, 1);

% Number of training samples

testNum = size(test, 1);

% Number of test samples

fprintf('Use of KNN for Iris data:\n');

fprintf('\tSize of design set (odd-indexed data)= %d\n', design_n);

fprintf('\tSize of test set (even-indexed data) = %d\n', testNum);

fprintf('\tRecognition rates as K varies:\n');

max_k = 15;

% Max range of k, number of neighbors

for k = 1:max_k,

% For each number of neighbords, do

computed = feval(mfilename, design, test, k);
% Compute class label for test point

correct_count = sum(test(:, end) == computed);
% # of test points classified correctly

recog(k) = correct_count/testNum;

% Ratio of correct # over total #

fprintf('\t%d-NNR ===> 1-%d/%d = %.2f%%.\n', ...

k, testNum-correct_count, testNum, recog(k)*100);
%Display percentage

end

plot(1:max_k, recog*100, 'b-o');

% Plot recognition rate vs values of k

grid on;

title('Recognition rates of Iris data using K-NNR');

xlabel('K');

ylabel('Recognition rates (%)');
