Assignment 5: L^{p} Spaces

1. Let (X, \mathcal{F}, μ) be a measure space, $f \in L^{p}(\mu), 1 \leq p \leq \infty$. Suppose there exist sets E_{n} satisfying $\mu\left(E_{n}\right)=1 / n$ for all n. Show

$$
\lim _{n \rightarrow \infty}\left(n^{\frac{p-1}{p}} \int_{E_{n}}|f| d \mu\right)=0
$$

2. Verify that for every measurable function f on a sigma-finite measure space (X, \mathcal{F}, μ), and $1 \leq p<\infty$,

$$
\int_{X}|f|^{p} d \mu=\int_{0}^{\infty} p t^{p-1} \mu\{|f|>t\} d t
$$

3. If $f \geq 0$, show that

$$
f(x)=\int_{0}^{\infty} \chi_{\{f>t\}}(x) d t
$$

4. Let $I=[0, \pi]$. Show that $\int_{I} x^{-1 / 4} \sin (x) d x \leq \pi^{3 / 4}$.
5. Let $I=[0, \pi]$ and $f \in L^{2}(I)$. Is it possible to have simultaneously

$$
\int_{I}(f(x)-\sin (x))^{2} d x \leq 4 / 9
$$

and

$$
\int_{I}(f(x)-\cos (x))^{2} d x \leq 1 / 9 ?
$$

6. Find an example of a proper non-trivial closed subspace of $L^{2}([0,1])$ and an example of a subspace of $L^{2}([0,1])$ that is not closed.
7. Let (X, \mathcal{F}, μ) be a measure space. Find all functions $f: X \rightarrow[0, \infty)$ satisfying

$$
\|f\|_{p}^{p}=\|f\|_{1}<\infty
$$

for all $p>0$.
8. Let (X, \mathcal{F}, μ) be a finite measure space. Let $f_{n}: X \rightarrow[0, \infty)$ be such that $\left\|f_{n}\right\|_{p} \leq 1,1<p<\infty$, and $f_{n} \rightarrow f$ a.e. Show that $f \in L^{p}(\mu)$ and $\left\|f_{n}-f\right\|_{1} \rightarrow 0$.
9. True or false: If $f_{n} \in L^{1}([0,1])$ and $f_{n} \rightarrow 0$ in L^{1}, then $f_{n} \rightarrow 0$ a.e.
10. Let $f \in L^{p}\left(\mathbf{R}^{n}\right), 1<p<\infty$. Compute

$$
\lim _{h \rightarrow 0} \int_{\mathbf{R}^{n}}|f(x+h)-f(x)|^{p} d x
$$

11. Assume $1<p<\infty, 1 / p+1 / q=1, f \in L^{p}, g \in L^{q}$.
(a) For $x \in \mathbf{R}$, let $K_{x}(y)=f(x-y) g(y)$. Show that $K_{x} \in L^{1}$.
(b) Let $h(x)=\int f(x-y) g(y) d y$. Show that h is bounded.
(c) Show h is continuous.
12. Let (X, \mathcal{F}, μ) be a sigma-finite measure space, $1 \leq p_{1}, p_{2}<\infty$. Suppose there exist constants c_{1}, c_{2} such that

$$
\mu\{x:|f(x)|>y\} \leq \frac{c_{j}}{p_{j}}, j=1,2, \text { for all } y>0 .
$$

Show that $f \in L^{p}(\mu), p_{1}<p<p_{2}$. Hint: Use Problem 2.
13. Let (X, \mathcal{F}, μ) be a finite measure space, $1<p<\infty$. Suppose $f_{n} \rightarrow f$ a.e., $\left\|f_{n}\right\|_{p} \leq 1$ for all n . Show

$$
\int_{X} f_{n} g d \mu \rightarrow \int_{X} f g d \mu
$$

, for all $g \in L^{q}(\mu), 1 / p+1 / q=1$.
14. Let $f \in L^{1}(\mathbf{R}) \cap L^{2}(\mathbf{R})$ and let $f_{0}(x)=x f(x)$. Show that

$$
\|f\|_{1} \leq\left(8\|f\|_{2}\left\|f_{0}\right\|_{2}\right)^{1 / 2}
$$

15. Let (X, \mathcal{F}, μ) be a measure space, $1<p<\infty$. If $f_{n}, f \in L^{p}(\mu)$ and $\int_{X} f_{n} g d \mu \rightarrow \int_{X} f g d \mu$ for every $g \in L^{q}(\mu), 1 / p+1 / q=1$, show that

$$
\|f\|_{p} \leq \liminf \left\|f_{n}\right\|_{p}
$$

