Real Analysis Qual Prep

Summer 2009

Assignment 5: L^p Spaces

1. Let (X, \mathcal{F}, μ) be a measure space, $f \in L^p(\mu)$, $1 \le p \le \infty$. Suppose there exist sets E_n satisfying $\mu(E_n) = 1/n$ for all n. Show

$$\lim_{n \to \infty} \left(n^{\frac{p-1}{p}} \int_{E_n} |f| d\mu \right) = 0$$

2. Verify that for every measurable function f on a sigma-finite measure space (X, \mathcal{F}, μ) , and $1 \leq p < \infty$,

$$\int_X |f|^p d\mu = \int_0^\infty p t^{p-1} \mu \left\{ |f| > t \right\} dt$$

3. If $f \ge 0$, show that

$$f(x) = \int_0^\infty \chi_{\{f > t\}}(x) dt$$

- 4. Let $I = [0, \pi]$. Show that $\int_{I} x^{-1/4} \sin(x) dx \le \pi^{3/4}$.
- 5. Let $I = [0, \pi]$ and $f \in L^2(I)$. Is it possible to have simultaneously

$$\int_{I} (f(x) - \sin(x))^2 dx \le 4/9$$

and

$$\int_{I} (f(x) - \cos(x))^2 dx \le 1/9?$$

- 6. Find an example of a proper non-trivial closed subspace of $L^2([0,1])$ and an example of a subspace of $L^2([0,1])$ that is not closed.
- 7. Let (X,\mathcal{F},μ) be a measure space. Find all functions $f:X\to [0,\infty)$ satisfying

$$||f||_p^p = ||f||_1 < \infty$$

for all p > 0.

- 8. Let (X, \mathcal{F}, μ) be a finite measure space. Let $f_n : X \to [0, \infty)$ be such that $||f_n||_p \leq 1, 1 , and <math>f_n \to f$ a.e. Show that $f \in L^p(\mu)$ and $||f_n f||_1 \to 0$.
- 9. True or false: If $f_n \in L^1([0,1])$ and $f_n \to 0$ in L^1 , then $f_n \to 0$ a.e.
- 10. Let $f \in L^p(\mathbf{R}^n)$, 1 . Compute

$$\lim_{h \to 0} \int_{\mathbf{R}^n} |f(x+h) - f(x)|^p dx$$

- 11. Assume 1 , <math>1/p + 1/q = 1, $f \in L^p$, $g \in L^q$.
 - (a) For $x \in \mathbf{R}$, let $K_x(y) = f(x-y)g(y)$. Show that $K_x \in L^1$.
 - (b) Let $h(x) = \int f(x-y)g(y)dy$. Show that h is bounded.
 - (c) Show h is continuous.
- 12. Let (X, \mathcal{F}, μ) be a sigma-finite measure space, $1 \leq p_1, p_2 < \infty$. Suppose there exist constants c_1, c_2 such that

$$\mu \{x : |f(x)| > y\} \le \frac{c_j}{p_j}, j = 1, 2, \text{ for all } y > 0.$$

Show that $f \in L^p(\mu)$, $p_1 . Hint: Use Problem 2.$

13. Let (X, \mathcal{F}, μ) be a finite measure space, $1 . Suppose <math>f_n \to f$ a.e., $||f_n||_p \le 1$ for all n. Show

$$\int_X f_n g d\mu \to \int_X f g d\mu$$

, for all $g \in L^{q}(\mu)$, 1/p + 1/q = 1.

14. Let $f \in L^1(\mathbf{R}) \cap L^2(\mathbf{R})$ and let $f_0(x) = xf(x)$. Show that

$$||f||_1 \le (8||f||_2||f_0||_2)^{1/2}$$

15. Let (X, \mathcal{F}, μ) be a measure space, $1 . If <math>f_n, f \in L^p(\mu)$ and $\int_X f_n g d\mu \to \int_X f g d\mu$ for every $g \in L^q(\mu), 1/p + 1/q = 1$, show that

$$||f||_p \le \liminf ||f_n||_p.$$