ECE 301

Division 1, Spring 2007
Instructor: Mimi Boutin
Final Examination

Instructions:

1. Wait for the "BEGIN" signal before opening this booklet. In the meantime, read the instructions below and fill out the requested info.
2. When the end of the exam is announced, you must stop writing immediately. Anyone caught writing after the exam is over will get a grade of zero.
3. At the end of this document is a 5 page table of formulas and 4 pages of scratch paper. You may detach these once the exam begins. Each formula is labeled with a number. To save time, you may use these numbers to specify which formula you are using. If you use a formula which is not contained in this table, you must explain why it is true in order to get full credit.
4. This is a closed book exam. The only personal items allowed are pens/pencils, erasers and something to drink. Anything else is strictly forbidden.
5. You must keep your eyes on your exam at all times. Looking around is strictly forbidden.

Name: \qquad
Email: \qquad
Signature:

Itemized Scores

Problem 1:	Problem 6:
Problem 2:	Problem 7:
Problem 3:	Problem 8:
Problem 4:	Problem 9:
Problem 5:	
Total:	

(10 pts) 1. State the sampling theorem. (You may use your own words but be precise!)
2.
(5 pts) a) Is the DT signal $x[n]=\cos \left(6 n+\frac{\pi}{6}\right)$ periodic? (Answer yes/no and justify your answer.)
(10 pts) b) Is the CT signal $x(t)=e^{2 \pi t}$ periodic? (Answer yes/no and justify your answer.)
3.
(5 pts) a) Without using the table, find the unit impulse response of the DT system defined by

$$
y[n]=x[n-1]-x[n]+3 x[n+2]
$$

(10 pts) b) Without using the table, find the unit impulse response of the CT system consisting of the cascade of S_{1} and S_{2}, (i.e. S_{1} followed by S_{2}), where S_{1} is defined by

$$
y(t)=x(t+3)
$$

and S_{2} is defined by

$$
y(t)=x(4 t)
$$

(Justify your answer.)
(15 pts) c) Using the table of Laplace transforms and properties, find the unit impulse response of the CT causal system defined by

$$
y^{\prime}(t)+y(t)=4 x(t)
$$

(Justify your answer.)
(15 pts) 4. An LTI system has unit impulse response $h(t)=u(t+3)$. Compute the system's response to the input $x(t)=e^{-3 t} u(t+1)$. (Justify your answer carefully!)
(15 pts) 5. Compute the Fourier series coefficients of the DT signal $x[n]=(-j)^{n+1}$.
(20 pts) 6. A DT signal $x[n]$ has z-transform

$$
X(z)=\frac{z}{1+z^{5}}, \quad \operatorname{ROC}|z|>1
$$

Use the definition of the z-transform to find $x[n]$.
(15 pts) 7. The Laplace transform of the unit impulse response of an LTI system is

$$
H(s)=\frac{1}{s+2}, \operatorname{Re}(s)>-2 .
$$

Determine the response $y(t)$ of the system when the input is

$$
x(t)= \begin{cases}e^{-3 t} & t>0 \\ 0 & t=0 \\ -e^{3 t} & t<0\end{cases}
$$

(10 pts) 8. A signal $x(t)$ has Nyquist rate equal to 14 . This signal is modulated by a carrier $c(t)=\cos (10 t)$ to get $y(t)$. Draw a diagram representing a system which would demodulate $x(t)$.
(20 pts) 9. A DT signal $x[n]$ has a Fourier transform $\mathcal{X}(\omega)$ that is zero for $\frac{\pi}{4} \leq$ $|\omega| \leq \pi$. Another signal

$$
g[n]=x[n] \sum_{k=-\infty}^{\infty} \delta[n-1-4 k]
$$

is generated. Specify the frequency response $H\left(e^{j \omega}\right)$ of a low-pass filter that produces $x[n]$ when $g[n]$ is the input.

Table

DT Signal Energy and Power

$$
\begin{align*}
E_{\infty} & =\sum_{n=-\infty}^{\infty}|x[n]|^{2} \tag{1}\\
P_{\infty} & =\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}|x[n]|^{2} \tag{2}
\end{align*}
$$

CT Signal Energy and Power

$$
\begin{align*}
E_{\infty} & =\int_{-\infty}^{\infty}|x(t)|^{2} d t \tag{3}\\
P_{\infty} & =\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|x(t)|^{2} d t \tag{4}
\end{align*}
$$

Fourier Series of CT Periodic Signals with period T

$$
\begin{align*}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k\left(\frac{2 \pi}{T}\right) t} \tag{5}\\
a_{k} & =\frac{1}{T} \int_{0}^{T} x(t) e^{-j k\left(\frac{2 \pi}{T}\right) t} d t \tag{6}
\end{align*}
$$

Fourier Series of DT Periodic Signals with period N

$$
\begin{align*}
x[n] & =\sum_{k=0}^{N-1} a_{k} e^{j k\left(\frac{2 \pi}{N}\right) n} \tag{7}\\
a_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k\left(\frac{2 \pi}{N}\right) n} \tag{8}
\end{align*}
$$

CT Fourier Transform

$$
\begin{align*}
\text { F.T. : } X(\omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \tag{9}\\
\text { Inverse F.T.: } x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega \tag{10}
\end{align*}
$$

Properties of CT Fourier Transform

Let $x(t)$ be a continuous-time signal and denote by $X(\omega)$ its Fourier transform. Let $y(t)$ be another continuous-time signal and denote by $Y(\omega)$ its Fourier transform.

	Signal	$F T$
Linearity:	ax(t)+by(t)	$a X(\omega)+b Y(\omega)$
Time Shifting:	$x\left(t-t_{0}\right)$	$e^{-j \omega t_{0}} X(\omega)$
Frequency Shifting:	$e^{j \omega_{0} t} x(t)$	$X\left(\omega-\omega_{0}\right)$
Time and Frequency Scaling:	$x(a t)$	$\frac{1}{\|a\|} X\left(\frac{\omega}{a}\right)$
		$\frac{1}{2 \pi} X(\omega) * Y(\omega)$
Multiplication:	$x(t) y(t)$	$X(\omega) Y(\omega)$
Convolution:	$x(t) * y(t)$	$j \omega X(\omega)$

Some CT Fourier Transform Pairs

$$
\begin{array}{rll}
e^{j \omega_{0} t} & \xrightarrow{\mathcal{F}} & 2 \pi \delta\left(\omega-\omega_{0}\right) \\
1 & \xrightarrow{\mathcal{F}} & 2 \pi \delta(\omega) \\
\frac{\sin W t}{\pi t} & \xrightarrow{\mathcal{F}} & u(\omega+W)-u(\omega-W) \\
u\left(t+T_{1}\right)-u\left(t-T_{1}\right) & \xrightarrow{\mathcal{F}} & \frac{2 \sin \left(\omega T_{1}\right)}{\omega} \\
\delta(t) & \xrightarrow{\mathcal{F}} & 1 \\
e^{-a t} u(t), \mathcal{R} e\{a\}>0 & \xrightarrow{\mathcal{F}} & \frac{1}{a+j \omega} \\
t e^{-a t} u(t), \mathcal{R} e\{a\}>0 & \xrightarrow{\mathcal{F}} & \frac{1}{(a+j \omega)^{2}} \tag{24}
\end{array}
$$

DT Fourier Transform

Let $x[n]$ be a discrete-time signal and denote by $X(\omega)$ its Fourier transform.

$$
\begin{align*}
\text { F.T.: } X(\omega) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{25}\\
\text { Inverse F.T.: } x[n] & =\frac{1}{2 \pi} \int_{2 \pi} X(\omega) e^{j \omega n} d \omega \tag{26}
\end{align*}
$$

Properties of DT Fourier Transform

Let $x(t)$ be a signal and denote by $X(\omega)$ its Fourier transform. Let $y(t)$ be another signal and denote by $Y(\omega)$ its Fourier transform.

	Signal	F.T.
Linearity:	ax[n] $+b y[n]$	$a X(\omega)+b Y(\omega)$
Time Shifting:	$x\left[n-n_{0}\right]$	$e^{-j \omega n_{0}} X(\omega)$
Frequency Shifting:	$e^{j \omega_{0} n} x[n]$	$X\left(\omega-\omega_{0}\right)$
Time Reversal:	$x[-n]$	$X(-\omega)$
Multiplication:	$x[n] y[n]$	$\frac{1}{2 \pi} X(\omega) * Y(\omega)$
Convolution:	$x[n] * y[n]$	$X(\omega) Y(\omega)$
Differencing in Time:	$x[n]-x[n-1]$	$\left(1-e^{-j \omega}\right) X(\omega)$

Some DT Fourier Transform Pairs

$$
\begin{align*}
& \sum_{k=0}^{N-1} a_{k} e^{j k\left(\frac{2 \pi}{N}\right) n} \quad \xrightarrow{\mathcal{F}} \quad 2 \pi \sum_{k=-\infty}^{\infty} a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right) \tag{34}\\
& e^{j \omega_{0} n} \quad \xrightarrow{\mathcal{F}} \quad 2 \pi \sum_{l=-\infty}^{\infty} \delta\left(\omega-\omega_{0}-2 \pi l\right) \tag{35}\\
& 1 \xrightarrow{\mathcal{F}} 2 \pi \sum_{l=-\infty}^{\infty} \delta(\omega-2 \pi l) \tag{36}\\
& \frac{\sin W n}{\pi n}, 0<W<\pi \quad \xrightarrow{\mathcal{F}} \quad u(\omega+W)-u(\omega-W) X(\omega)= \begin{cases}1, & 0 \leq|\omega|<W \\
0, & \pi \geq|\omega|>W\end{cases} \tag{37}\\
& X(\omega) \text { periodic with period } 2 \pi \\
& \delta[n] \xrightarrow{\mathcal{F}} 1 \tag{38}\\
& u[n] \quad \xrightarrow{\mathcal{F}} \quad \frac{1}{1-e^{-j \omega}}+\pi \sum_{k=-\infty}^{\infty} \delta(\omega-2 \pi k) \tag{39}\\
& \alpha^{n} u[n],|\alpha|<1 \quad \xrightarrow{\mathcal{F}} \quad \frac{1}{1-\alpha e^{-j \omega}} \tag{40}\\
& (n+1) \alpha^{n} u[n],|\alpha|<1 \quad \xrightarrow{\mathcal{F}} \quad \frac{1}{\left(1-\alpha e^{-j \omega}\right)^{2}} \tag{41}
\end{align*}
$$

Laplace Transform

$$
\begin{equation*}
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t \tag{42}
\end{equation*}
$$

Properties of Laplace Transform

Let $x(t), x_{1}(t)$ and $x_{2}(t)$ be three CT signals and denote by $X(s), X_{1}(s)$ and $X_{2}(s)$ their respective Laplace transform. Let R be the ROC of $X(s)$, let R_{1} be the ROC of $X_{1}(z)$ and let R_{2} be the ROC of $X_{2}(s)$.

	Signal	L.T.	ROC	
Linearity:	$a x_{1}(t)+b x_{2}(t)$	$a X_{1}(s)+b X_{2}(s)$	At least $R_{1} \cap R_{2}$	(43)
Time Shifting:	$x\left(t-t_{0}\right)$	$e^{-s t_{0}} X(s)$	R	(44)
Shifting in s:	$e^{s_{0} t} x(t)$	$X\left(s-s_{0}\right)$	$R+s_{0}$	(45)
Conjugation:	$x^{*}(t)$	$X^{*}\left(s^{*}\right)$	R	(46)
Time Scaling:	$x(a t)$	$\frac{1}{\|a\|} X\left(\frac{s}{a}\right)$	$a R$	(47)
Convolution:	$x_{1}(t) * x_{2}(t)$	$X_{1}(s) X_{2}(s)$	At least $R_{1} \cap R_{2}$	(48)
Differentiation in Time:	$\frac{d}{d t} x(t)$	$s X(s)$	At least R	(49)
Differentiation in s:	$-t x(t)$	$\frac{d X(s)}{d s}$	R	(50)
Integration :	$\int_{-\infty}^{t} x(\tau) d \tau$	$\frac{1}{s} X(s)$	At least $R \cap \mathcal{R} e\{s\}>0$	(51)

Some Laplace Transform Pairs

Signal	$L T$	ROC
$\delta(t)$	1	all s
$e^{-\alpha t} u(t)$	$\frac{1}{s+\alpha}$	$\mathcal{R} e\{s\}>-\alpha$
$-e^{-\alpha t} u(-t)$	$\frac{1}{s+\alpha}$	$\mathcal{R} e\{s\}<-\alpha$

z-Transform

$$
\begin{equation*}
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \tag{55}
\end{equation*}
$$

Properties of z-Transform

Let $x[n], x_{1}[n]$ and $x_{2}[n]$ be three DT signals and denote by $X(z), X_{1}(z)$ and $X_{2}(z)$ their respective z-transform. Let R be the ROC of $X(z)$, let R_{1} be the ROC of $X_{1}(z)$ and let R_{2} be the ROC of $X_{2}(z)$.

	Signal	z-T.	ROC
Linearity:	$a x_{1}[n]+b x_{2}[n]$	$a X_{1}(z)+b X_{2}(z)$	At least $R_{1} \cap R_{2}$
Time Shifting:	$x\left[n-n_{0}\right]$	$z^{-n_{0}} X(z)$	R, but perhaps adding/deleting $z=0$
Time Shifting:	$x[-n]$	$X\left(z^{-1}\right)$	R^{-1}
Scaling in z:	$e^{j \omega_{0} n} x[n]$	$X\left(e^{-j \omega_{0}} z\right)$	R
Conjugation:	$x^{*}(t)$	$X^{*}\left(z^{*}\right)$	R
Convolution:	$x_{1}[n] * x_{2}[n]$	$X_{1}(z) X_{2}(z)$	At least $R_{1} \cap R_{2}$

Some z-Transform Pairs

Signal	LT	ROC
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$-u(-n-1)$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
$\alpha^{n} u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$\|z\|>\alpha$
$-\alpha^{n} u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$\|z\|<\alpha$
$\delta[n]$	1	all z

-SCRATCH -
(will not be graded)

