ECE 301

Division 1, Spring 2007 Instructor: Mimi Boutin Final Examination

Instructions:

- 1. Wait for the "BEGIN" signal before opening this booklet. In the meantime, read the instructions below and fill out the requested info.
- 2. When the end of the exam is announced, you must stop writing immediately. Anyone caught writing after the exam is over will get a grade of zero.
- 3. At the end of this document is a 5 page table of formulas and 4 pages of scratch paper. You may detach these **once the exam begins**. Each formula is labeled with a number. To save time, you may use these numbers to specify which formula you are using. If you use a formula which is *not* contained in this table, you must explain why it is true in order to get full credit.
- 4. This is a closed book exam. The only personal items allowed are pens/pencils, erasers and something to drink. Anything else is strictly forbidden.
- 5. You must keep your eyes on your exam at all times. Looking around is strictly forbidden.

Name:	_
Email:	_
Signature:	_

<u>Itemized Scores</u>	
Problem 1:	Problem 6:
Problem 2:	Problem 7:
Problem 3:	Problem 8:
Problem 4:	Problem 9:
Problem 5:	
Total:	

(10 pts) ${\bf 1}$. State the sampling theorem. (You may use your own words but be precise!)

2.

(5 pts) a) Is the DT signal $x[n]=\cos(6n+\frac{\pi}{6})$ periodic? (Answer yes/no and justify your answer.)

(10 pts) **b)** Is the CT signal $x(t) = e^{2\pi t}$ periodic? (Answer yes/no and justify your answer.)

3.

(5 pts) a) Without using the table, find the unit impulse response of the DT system defined by

$$y[n] = x[n-1] - x[n] + 3x[n+2]$$

(10 pts) **b) Without using the table**, find the unit impulse response of the CT system consisting of the cascade of S_1 and S_2 , (i.e. S_1 followed by S_2), where S_1 is defined by

$$y(t) = x(t+3),$$

and S_2 is defined by

$$y(t) = x(4t).$$

(Justify your answer.)

(15 pts) c) Using the table of Laplace transforms and properties, find the unit impulse response of the CT causal system defined by

$$y'(t) + y(t) = 4x(t)$$

(Justify your answer.)

(15 pts) 4. An LTI system has unit impulse response h(t)=u(t+3). Compute the system's response to the input $x(t)=e^{-3t}u(t+1)$. (Justify your answer carefully!)

(15 pts) **5.** Compute the Fourier series coefficients of the DT signal $x[n] = (-j)^{n+1}$.

(20 pts) 6. A DT signal x[n] has z-transform

$$X(z) = \frac{z}{1 + z^5}, \quad \text{ROC } |z| > 1.$$

Use the definition of the z-transform to find $\mathbf{x}[\mathbf{n}]$.

(15 pts) 7. The Laplace transform of the unit impulse response of an LTI system is

$$H(s) = \frac{1}{s+2}, \ \text{Re}(s) > -2.$$

Determine the response y(t) of the system when the input is

$$x(t) = \begin{cases} e^{-3t} & t > 0 \\ 0 & t = 0 \\ -e^{3t} & t < 0 \end{cases}.$$

(10 pts) **8.** A signal x(t) has Nyquist rate equal to 14. This signal is modulated by a carrier $c(t) = \cos(10t)$ to get y(t). Draw a diagram representing a system which would demodulate x(t).

(20 pts) **9.** A DT signal x[n] has a Fourier transform $\mathcal{X}(\omega)$ that is zero for $\frac{\pi}{4} \le |\omega| \le \pi$. Another signal

$$g[n] = x[n] \sum_{k=-\infty}^{\infty} \delta[n-1-4k]$$

is generated. Specify the frequency response $H(e^{j\omega})$ of a low-pass filter that produces x[n] when g[n] is the input.

Table

DT Signal Energy and Power

$$E_{\infty} = \sum_{n=-\infty}^{\infty} |x[n]|^2 \tag{1}$$

$$P_{\infty} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$
 (2)

CT Signal Energy and Power

$$E_{\infty} = \int_{-\infty}^{\infty} |x(t)|^2 dt \tag{3}$$

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt \tag{4}$$

Fourier Series of CT Periodic Signals with period T

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\left(\frac{2\pi}{T}\right)t}$$
 (5)

$$a_k = \frac{1}{T} \int_0^T x(t)e^{-jk\left(\frac{2\pi}{T}\right)t} dt \tag{6}$$

Fourier Series of DT Periodic Signals with period N

$$x[n] = \sum_{k=0}^{N-1} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

$$\tag{7}$$

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk(\frac{2\pi}{N})n}$$
 (8)

CT Fourier Transform

F.T.:
$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
 (9)

Inverse F.T.:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$
 (10)

Properties of CT Fourier Transform

Let x(t) be a continuous-time signal and denote by $X(\omega)$ its Fourier transform. Let y(t) be another continuous-time signal and denote by $Y(\omega)$ its Fourier transform.

$$Signal \qquad \qquad FT$$
 Linearity: $ax(t) + by(t) \qquad \qquad aX(\omega) + bY(\omega) \qquad \qquad (11)$

Time Shifting:
$$x(t-t_0)$$
 $e^{-j\omega t_0}X(\omega)$ (12)

Frequency Shifting:
$$e^{j\omega_0 t}x(t)$$
 $X(\omega - \omega_0)$ (13)

Time and Frequency Scaling:
$$x(at)$$

$$\frac{1}{|a|}X\left(\frac{\omega}{a}\right) \tag{14}$$

Multiplication:
$$x(t)y(t)$$
 $\frac{1}{2\pi}X(\omega) * Y(\omega)$ (15)

Convolution:
$$x(t) * y(t)$$
 $X(\omega)Y(\omega)$ (16)

Differentiation in Time:
$$\frac{d}{dt}x(t)$$
 $j\omega X(\omega)$ (17)

Some CT Fourier Transform Pairs

$$e^{j\omega_0 t} \xrightarrow{\mathcal{F}} 2\pi\delta(\omega - \omega_0)$$
 (18)

$$1 \xrightarrow{\mathcal{F}} 2\pi\delta(\omega) \tag{19}$$

$$\frac{\sin Wt}{\pi t} \xrightarrow{\mathcal{F}} u(\omega + W) - u(\omega - W) \tag{20}$$

$$e^{j\omega_0 t} \xrightarrow{\mathcal{F}} 2\pi\delta(\omega - \omega_0) \tag{18}$$

$$1 \xrightarrow{\mathcal{F}} 2\pi\delta(\omega) \tag{19}$$

$$\frac{\sin Wt}{\pi t} \xrightarrow{\mathcal{F}} u(\omega + W) - u(\omega - W) \tag{20}$$

$$u(t + T_1) - u(t - T_1) \xrightarrow{\mathcal{F}} \frac{2\sin(\omega T_1)}{\omega} \tag{21}$$

$$\delta(t) \xrightarrow{\mathcal{F}} 1 \tag{22}$$

$$\delta(t) \stackrel{\mathcal{F}}{\longrightarrow} 1$$
 (22)

$$e^{-at}u(t), \mathcal{R}e\{a\} > 0 \xrightarrow{\mathcal{F}} \frac{1}{a+j\omega}$$
 (23)

$$te^{-at}u(t), \mathcal{R}e\{a\} > 0 \quad \xrightarrow{\mathcal{F}} \quad \frac{1}{(a+j\omega)^2}$$
 (24)

DT Fourier Transform

Let x[n] be a discrete-time signal and denote by $X(\omega)$ its Fourier transform.

F.T.:
$$X(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 (25)

Inverse F.T.:
$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\omega) e^{j\omega n} d\omega$$
 (26)

Properties of DT Fourier Transform

Let x(t) be a signal and denote by $X(\omega)$ its Fourier transform. Let y(t) be another signal and denote by $Y(\omega)$ its Fourier transform.

	Signal	F.T.	
Linearity:	ax[n] + by[n]	$aX(\omega) + bY(\omega)$	(27)
Time Shifting:	$x[n-n_0]$	$e^{-j\omega n_0}X(\omega)$	(28)
Frequency Shifting:	$e^{j\omega_0 n}x[n]$	$X(\omega-\omega_0)$	(29)
Time Reversal:	x[-n]	$X(-\omega)$	(30)
Multiplication:	x[n]y[n]	$\frac{1}{2\pi}X(\omega) * Y(\omega)$	(31)
Convolution:	x[n]*y[n]	$X(\omega)Y(\omega)$	(32)
Differencing in Time:	x[n] - x[n-1]	$(1 - e^{-j\omega})X(\omega)$	(33)

Some DT Fourier Transform Pairs

$$\sum_{k=0}^{N-1} a_k e^{jk\left(\frac{2\pi}{N}\right)n} \xrightarrow{\mathcal{F}} 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - \frac{2\pi k}{N})$$
(34)

$$e^{j\omega_0 n} \xrightarrow{\mathcal{F}} 2\pi \sum_{l=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi l)$$
 (35)

$$1 \quad \xrightarrow{\mathcal{F}} \quad 2\pi \sum_{l=-\infty}^{\infty} \delta(\omega - 2\pi l) \tag{36}$$

$$\frac{\sin Wn}{\pi n}, 0 < W < \pi \quad \xrightarrow{\mathcal{F}} \quad u(\omega + W) - u(\omega - W)X(\omega) = \begin{cases} 1, & 0 \le |\omega| < W \\ 0, & \pi \ge |\omega| > W \end{cases}$$
 (37)

 $X(\omega)$ periodic with period 2π

$$\delta[n] \stackrel{\mathcal{F}}{\longrightarrow} 1$$
 (38)

$$u[n] \xrightarrow{\mathcal{F}} \frac{1}{1 - e^{-j\omega}} + \pi \sum_{k = -\infty}^{\infty} \delta(\omega - 2\pi k)$$
 (39)

$$\alpha^n u[n], |\alpha| < 1 \xrightarrow{\mathcal{F}} \frac{1}{1 - \alpha e^{-j\omega}}$$
 (40)

$$(n+1)\alpha^n u[n], |\alpha| < 1 \quad \xrightarrow{\mathcal{F}} \quad \frac{1}{(1 - \alpha e^{-j\omega})^2} \tag{41}$$

Laplace Transform

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$
 (42)

Properties of Laplace Transform

Let x(t), $x_1(t)$ and $x_2(t)$ be three CT signals and denote by X(s), $X_1(s)$ and $X_2(s)$ their respective Laplace transform. Let R be the ROC of X(s), let R_1 be the ROC of $X_1(z)$ and let R_2 be the ROC of $X_2(s)$.

	Signal	L.T.	ROC	
Linearity:	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$	(43)
Time Shifting:	$x(t-t_0)$	$e^{-st_0}X(s)$	R	(44)
Shifting in s:	$e^{s_0t}x(t)$	$X(s-s_0)$	$R + s_0$	(45)
Conjugation:	$x^*(t)$	$X^*(s^*)$	R	(46)
Time Scaling:	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	aR	(47)
Convolution:	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$	(48)
Differentiation in Time:	$\frac{d}{dt}x(t)$	sX(s)	At least R	(49)
Differentiation in s:	-tx(t)	$\frac{dX(s)}{ds}$	R	(50)
Integration:	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{s}X(s)$	At least $R \cap \mathcal{R}e\{s\} > 0$	(51)

Some Laplace Transform Pairs

z-Transform

$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$
 (55)

Properties of z-Transform

Let x[n], $x_1[n]$ and $x_2[n]$ be three DT signals and denote by X(z), $X_1(z)$ and $X_2(z)$ their respective z-transform. Let R be the ROC of X(z), let R_1 be the ROC of $X_1(z)$ and let R_2 be the ROC of $X_2(z)$.

	Signal	z-T.	ROC	
Linearity:	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	At least $R_1 \cap R_2$	(56)
Time Shifting:	$x[n-n_0]$	$z^{-n_0}X(z)$	R, but perhaps adding/deleting $z=0$	(57)
Time Shifting:	x[-n]	$X(z^{-1})$	R^{-1}	(58)
Scaling in z:	$e^{j\omega_0 n}x[n]$	$X(e^{-j\omega_0}z)$	R	(59)
Conjugation:	$x^*(t)$	$X^*(z^*)$	R	(60)
Convolution:	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least $R_1 \cap R_2$	(61)

Some z-Transform Pairs

Signal
 LT
 ROC

$$u[n]$$
 $\frac{1}{1-z^{-1}}$
 $|z| > 1$
 (62)

 $-u(-n-1)$
 $\frac{1}{1-z^{-1}}$
 $|z| < 1$
 (63)

 $\alpha^n u[n]$
 $\frac{1}{1-\alpha z^{-1}}$
 $|z| > \alpha$
 (64)

 $-\alpha^n u[-n-1]$
 $\frac{1}{1-\alpha z^{-1}}$
 $|z| < \alpha$
 (65)

 $\delta[n]$
 1
 all z
 (66)