Assignment 3 - Integration \& Residues

Exercises adorned with $a \star$ were taken from past quals written by Prof. Bell.

1. \star Suppose a_{n} is a sequence of distinct non-zero complex numbers satisfying

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|^{-1}<\infty
$$

Let $\mathcal{A}=\left\{a_{n} \mid n=1, \cdots, \infty\right\}$.
(a) Prove that $\sum_{n=1}^{\infty} \frac{1}{z-a_{n}}$ converges to a function $f(z)$ that is analytic on $\mathbb{C}-\mathcal{A}$.
(b) For $z \in \mathbb{C}-\mathcal{A}$, let

$$
G(z)=\exp \left(\int_{\gamma_{0}^{z}} f(w) d w\right)
$$

where γ_{0}^{z} is a curve in $\mathbb{C}-\mathcal{A}$ that starts at the origin and ends at z. Prove that G is well-defined and analytic on $\mathbb{C}-\mathcal{A}$. Show that G has removable singularities at each point a_{n}. Finally, show that the points a_{n} are in fact simple zeroes of G.
2. Compute

$$
\int_{-\infty}^{\infty} \frac{\cos x}{1+x^{3}} d x
$$

3. Evaluate

$$
\int_{0}^{\infty} \frac{\log x}{\left(x^{2}+1\right)^{2}} d x
$$

4. \star Suppose P and Q are polynomials with the degree of P at least two less than the degree of Q. Prove that the sum of the residues of P / Q in the complex plane is zero.
5. Evaluate

$$
\int_{-\infty}^{\infty} \frac{e^{i x}}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x
$$

(and show your work).
6. Show that

$$
\int_{-\infty}^{\infty} \frac{x \sin (2 x)}{x^{4}+16} d x=\frac{\pi e^{-2 \sqrt{2}} \sin (2 \sqrt{2})}{4}
$$

Show all work.
7. Evaluate

$$
\int_{-\infty}^{\infty} \frac{\cos t}{1+t^{4}} d t
$$

8. Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\sin (\log x)}{x^{2}+4} d x
$$

where Log denote the principal value of the logarithm (real on the positive ray).
9. \star Compute

$$
\int_{0}^{\infty} \frac{1}{x^{3}+1} d x
$$

