Q.1 To determine whether w, = SW_l(ml —mg) or w, = (my —mg) should be used as solution,
so as to maximize J(w) = :J’TTSSYV?/E‘;, I conducted the following experiment. A data set was
obtained which is shown in Fig. 1. The sample mean M; and M, and sample covariance
marix S7; and Sy were calculated. Sy = S7 + Sy is the within class covariance matrix.

Sp = (My — My)T (M — M>) is the between class variance.

(1) wo = Sy~ L(my — my)
Fig. 1(a) shows the line on which data set was projected alongwith the projected means of
the two classes. The direction of this line was along w, = SW_I(Ml — Mj). The Euclidean
distance between the two projected means was 7.3673 and the error in classification was 2.5%.

(2) wo = (m1 —m2)
Fig. 1(b) shows the line along w, = (M; — Ms), on which the data was projected. The
Euclidean distance between two projected means was 15.389 and the error in classification
was 10%

Data projected on line along (m2-m1)/Sw Data projected on line along m2-m1

-10 0 10 20 30 40
(a) Sw™ (M1 — Ma) (b) (My — M)
Figure 1: Fisher’s Linear Discriminant Function

From the above figures it is clear that higher classification accuracy can be achieved if within
class variance(Syy) is also considered while maximizing J(w) function. The reason for this is,
it may be possible that the sample means of the two classes be far apart in one direction but
at the same time the overlapping area of the projected samples of both classes may also be
very large as shown in Figure 1(b). Due to this, evenif the means are far apart, it may not
be possible to accurately classify the data points lying in the overlapping region. To ensure
better accuracy, the overlapping area of the two classes, in the projected plane, should be
as small as possible while the distance between two means should be as large as possible.
The overlapping area can be determined from the within class variance Syy. Thus both Sy,
and (M; — Ms) must be considered while determining the direction of line on which the data
should be projected.

Q.2 The data in Q.2 and Q.3 was obtained from
http://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits.

Data set description: The data is a set of handwritten digits from 0 to 9. There are 16
features for each digit. For my experiment I selected data and feature vector corresponding
to digits 0 and 1 so as to have two class classification problem. The data was divided into
two parts - training set and testing set.

(1) 16 dimensional data
(a) SVM

Two different codes for Support vector machine were used. First one was SVMlight obtained
from http://svmlight.joachims.org/ and the second one was Matlab’s inbuilt function. SVM-
light is an implementation of Vapnik’s Support Vector Machine for the problem of pattern
recognition, for the problem of regression, and for the problem of learning a ranking function.
It uses various standard kernels defined, to obtain support vectors during the training of
support vector machine. The optimization algorithms used in this software can be obtained
from Thorsten Joachims, Learning to Classify Text Using Support Vector Machines and Dis-
sertation, Kluwer, 2002 and T. Joachims, 11 in: Making large-Scale SVM Learning Practical.
Advances in Kernel Methods - Support Vector Learning, B. Schlkopf and C. Burges and A.
Smola (ed.), MIT Press, 1999. The data set was first converted in the format identified by
SVMlight. This code gives accuracy achieved in learning and classification process as output.
It has two file- one for learning SVM and other for classifying the test data based on learning
parameters obtained.

The following results were obtained on training set:

Error = 2.44%
Accuracy = 97.56%

Number of kernel evaluations = 17540
Number of SV = 45

The following results were obtained on test set:

Error = 2.34%
Accuracy = 97.66%

(b) Neural Network

The source code for neural network was obtained from
http://www.philbrierley.com/main.html?code/index.html&code/codeleft.html.

It uses feedforward and back propagation technique to train the network. Backpropagation
if done using gradient descent method. As the code only trained the network, a code was
written to test the trained network. There are 3 layers- input, hidden and output. Number
of neurons in input layer depends on the size of feature vectors. Number of neurons in
hidden layer can be specified by user. The output have only one neuron making it a NN for
classifying two classes. If the output < 0 then it belongs to class 1 and if output > 0 then is
belongs to class 2. Table 1 shows the training and testing error with learning rate = 0.1 as a
function of number of neurons in hidden layer. A function tanh() was used at hidden layer for

Table 1: Training and testing error as a function of number of neurons in hidden layer

Number of neurons | Training Error(percent) | Testing error(percent)
1 5.97 8.53
5 6.20 8.67
10 5.03 9.63

transforming input values to output values. The bias is provided at input by concatinating
the input feature vector with a 1.

Table 1 shows that, increasing number of neurons in hidden layer causes decrease in the
accuracy of the network. This behaviour can be accounted to overfitting of training data
set. Overfitting may achieve small training error but may increase the testing error. So the
optimum number of neurons in hidden layer can be decided based on experiments or if there
is some prior knowledge of the data.

Table 2 shows the training and testing error as a function of learning rate. Smaller value
of learning rate causes slow convergence of the network while larger value causes fast con-
vergence. While it is not possible to show it here, it was observed that for larger values of
learning rate, the error in output fluctuated by large values and for smaller values of learning
rate, the error in the output changed by small values before settling to the final value.

Table 2: Training and testing error as a function of learning rate with number of neurons in hidden
layer = 5

Learning rate | Training Error(percent) | Testing error(percent)
0.05 8.42 8.39
0.1 6.20 8.67
0.5 1.29 6.88

Thus the learning rate = 0.5 achieves better classifier accuracy.
(c) Comparing SVM and NN

From the above given results it is clear that SVM performs better than NN on this data set.
As SVM uses different kernels in estimating the partition hypercurve, it optimizes SVM and
selects the best kernel for obtaining higher accuracy. As against that, the NN uses only single
kernel tanh() and is the most general form of NN. More complicated and data specific NN
can be designed to achieve better accuracy in classifying data.

(2) 2-Dimensional data

Another experiment was performed with data set having only two feature vectors. This data
set was obtained from the original data set by taking two feature vectors that affected the
decision, the most. Table 3 shows the error in classification using SVM. Two different kernels
were used - linear and quadratic. Fig. and Fig. show the data and partition hypercurve
obtained. Table 4 shows the error in classification using NN. The number of neurons in hidden
layer was 1 and the results for two different learning rates is shown in the table.

Table 3: Classification error as a function of kernel in SVM

Kernel | Error(percent)
Linear 5.88
Quadratic 1.96

Table 4: Error as a function of learning rate in NN

Learning rate | Error(percent)
0.1 3.92
0.05 1.96

Figure 2: SVM

with linear kernel

Kernel Function: linear_kernel

10()W+:+4r :Jru H=HT :ﬁ:m%uguq F—H—— 1Bt
+ H o4 L. F - +9
+ o+ - + "
9L 14 o+ F N +
T 7+t +
I ++
i +]
801
o, "
+
70?& + * °
T +
601 4
+ |
501 1
40[- 1
30+ B
0 (training)
20} 0 (classified) i
1 (training)
10 1 (classified) |
O Support Vectors
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Figure 3: SVM with quadratic kernel

Kernel Function: quadratic_kernel

100g —
90+
ES
L+t
1, T+ o+ o+ ++
sop + 1
+ +
70?& + *
+
+
601 4
|
507 b
40 B
¢
30 B
+ 0 (training)
20H + 0(classified) B
1 (training)
10 1 (classified) 1
O Support Vectors
0 T T 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Conclusion

It can be observed that in two dimensions, the accuracy of SVM and NN is almost same.
Though the number of observations were decreased, still it can be seen that having more
features doesnot imply higher accuracy. The feature that has maximum influence in deciding
the class of the data should be selected and if desired accuracy is not achieved, then only
higher dimensions should be considered.

(Q.3) Nonparametric classifiers

(1) Parzen Window

The data set for this question was same as in question 2 with two features. In Parzen window
the size of the window is kept fixed and the number of training data belonging to each class
within that window are counted. The new data is classified as belonging to the class which
has maximum number of training data present in the window centered at the new data point.
A square window was considered for this experiment. The training data set size for each class
was 200 observations. And this was tested on 100 test data observations having equal number
of data belonging to both the classes. Table 5 shows the classification error as a function of
window size.

Table 5: Classification error as a function of window size in Parzen window classifier
Window size(hn) | Error(percent)
20 2.33
30 1.67
40 1.33
50 1.33
70 2.00

(2) k-nearest neighbor

In k-nearest neighbor classifier, we find the k-nearest neighbors in training data set from the
new data point which we intend to classify. Then the class which has maximum data points
from training data set, is assigned to the new data set. For this experiment too, I took same
data as above. First the distance to all the points in training data set was found and sorted
in ascending order. Then top k distances and data points corresponding to them were taken.
Out of them, the class that had maximum occurance, was assigned to the new unclassified
data point. Table 6 shows the classification error as the function of number of neighbors
considered.

Table 6: Classification error as a function of number of neighbors considered

Number of neighbors(kn) | Error(percent)
10 1.33
20 0.67
30 1
50 1.33
70 1.33

(3) Nearest Neighbor

In nearest neighbor classifier, the distance between unclassified data point and all the training
set data is found. I considered Euclidean distance as I had 2-dimensional data. The class of
the data point having smallest distance is assigned to the unclassified data point. Using same
data as in part (1) and (2), I got error of 2% with this classifier. Figure 6 shows the classifier
output.

(4) Conclusion

From the above reults it can be concluded that k-nearest neighbors gives then highest accu-
racy, next is Parzen window with optimum window size determined. Nearest neighbor has
the least accuracy when data set is not well separated as in this case. Also for Parzen win-
dow, increasing the size of the window doesnot ensure higher accuracy. Too small and too
large window sizes give more error as compared to mid-sized windows. Similarly for k-nearest
neighbors, increasing the number of nearest neighbors considered for classification, doesnot
guarantee higher classification accuracy. In fact after some value of kn, increasing kn doesnot
have any effect on the classification which can be seen from kn = 50 and kn = 70.

®0 O ®

30 o *
O Training data(0) *
20 O Training data(1) *
* Test data classified in class 0 -
0] % Testdata classified in class 1 *
O Wrong classification)) &))))
) 10 20 30 4 5 60 70 8 9% 100

@®
o
8
o
o
®
30 o * °©
O Training data(0) *E% @
20] © Training data(1) *
* Test data classified in class 0 b
10] % Testdata classified in class 1 *
O Wrong classification &
0 10 20 3 40 50 6 70 8 9 100

*

301 o *
O Training data(0) *
20| © Training data(1) *
* Test data classified in class 0 f
10| % Testdata classified in class 1 *
O Wrong classification &®
0 0 20 30 40 R 70 w0 w0

100

@®
o
*
6 o
*
sop
8
401 ©
o
®
30 * *
O Training data(0) *
20 © Training data(1) *
* Test data classified in class 0| b
107 % Testdata classified in class 1 *
O Wrong classification &
0 10 20 30 40 5 60 70 8 9 100

80 O ®

30f * §°
O Training data(0) *E* @
20f O Training data(1) *
* Test data classified in class 0 b
10| % Test data classified in class 1 *
O Wrong classification)) @))))
0 10 20 30 40 5 60 70 8 9 100

(d) hn = 50

Figure 4: Parzen Window classifier with different window sizes

8
o
o
®
30 * *
O Training data(0) *
20 O Training data(1) *
Test data classified in class 0 f
107 % Test data classified in class 1 *
© Wrong classification @
0 0 20 30 40 5 60 70 8 9 100

(a) kn = 10

®% 108 ¥ O %+ amamk.
o © Training data(0)
@ H o Training data(1)
& * Test data classified in class 0
o % Test data classified in class 1|9
o Wrong i]
o *
« oor 0% @ x
O 0 #0% w0 Oy
* * o
o * o)
E %&% % 8
* x P
O
® @ B8 o
© 8
Q, * °
40F o
* * o
° ®
301 * * °©
E ®
20 *
*
*
10 *
&
0 10 20 30 40 5 60 70 8 9 100

30 * *
O Training data(0) *
20| o Training data(1) *
Test data classified in class 0| f
101 % Test data classified in class 1 *
O Wrong classification &®
0 0 20 30 40 R 70 w0 w0

100

*
6 o
*
sop
8
401 ©
o
®
30 * *
O Training data(0) *,
20| © Training data(1) *
* Test data classified in class 0 b
101 % Test data classified in class 1 *
© Wrong classification &
0 10 20 3 40 50 6 70 8 90

(d) kn = 50

8
o
)
w s }go :
O Training data(0) i ®
20/l © Training data(1) "
% Test data classified in class 0 b
10ff % Test data classified in class 1 *
O Wrong classification &
0 o 20w 4 S e 70 s 9 100

Figure 5: k-nearest neighbors classifier with different k values

100

40

30

20

Figure 6: Nearest neighbor classifier

*

Bk HOBk *x O * & QD TRk Bk * @

Training data(0)
Training data(1)
Test data classified in class 0
Test data classified in class 1

O % ¥ O O

Wrong classification

0 10 20 30 40

50 60 70 80 90 100

10

