- 1. Let $a_n = \frac{-1}{n}$, for $n \in \mathbb{N}$.
 - (a) Prove $\sum_{1}^{\infty} a_n$ converges, but not absolutely (can you do this without the "p-test"?)
 - (b) Prove there is a rearrangement, $\{a_{n_k}\}$ such that $\sum_{1}^{\infty} a_{n_k}$ converges to .24569004 (without using the theorem of Riemann in the text) and explicitly give $a_{n_1}, a_{n_2}, ..., a_{n_{10}}$.
- 2. The following gives a way to use basic calculus to prove the "p test", namely that $\sum \frac{1}{n}^p$ converges exactly when p > 1. Draw rectangles, R_n in the plane with base [n, n+1] (on the X- axis) and height $\frac{1}{n}^p$. Dominate them with a function, and integrate the function from say $[2, \infty)$. Fill in the details of this proof.
- 3. (a) Let C denote the Cantor set, and notice C^c is a countable union of disjoint intervals, so it's length is defined. Find the length of C^c .
 - (b) Now repeat the construction of the Cantor set, but cut out the middle fourths. What is the length of its complement?
 - (c) Given any $r \in [0,1)$ does there exist a Cantor set whose compliment has length r?
- 4. Prove that the Cantor set is $\{r \in [0,1]; r'\text{s} \text{ base 3 decimal contains no } 1\}$. Warning: $\frac{1}{3} = .1_{\text{base 3}} = .0\overline{22}_{\text{base 3}}$. You need to be explicit about the decimal representation you choose in the ambiguous cases for the statement above to make sense.
- 5. Repeat the construction of the Cantor set, but now cut out the middle third *closed* interval. Call this new set C.
 - (a) Is \mathcal{C} empty?
 - (b) Is \mathcal{C} open? closed?
 - (c) What is the cardinality or C?
- 6. Let X be a normed linear space (i.e. a normed vector space over, say \mathbb{R} . Show X is complete \Leftrightarrow every absolutely convergent series of X converges in X.