(15 pts) 1. Using the definition of the Fourier transform, compute the Fourier transform of the DT signal:

$$
x[n]=e^{j \frac{\pi}{17} n}\left(\frac{1}{3}\right)^{n} u[n-1]
$$

$$
\begin{aligned}
x(\omega) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \\
& =\sum_{n=-\infty}^{\infty} e^{j \frac{\pi}{77} n}\left(\frac{1}{3}\right)^{n} n[n-1] e^{-j \omega n}, n \text { must } b e \geq 1 \\
& =\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n} e^{-j n\left(\omega-\frac{\pi}{17}\right)}, \text { let } m=n-1 \\
& =\frac{1}{3} \cdot e^{-j\left(\omega-\frac{\pi}{17}\right)} \sum_{m=0}^{\infty}\left(\frac{1}{3}\right)^{m} \underbrace{e^{-j m\left(\omega-\frac{\pi}{17}\right)}} \frac{e^{-j\left(\omega-\frac{\pi}{17}\right)}}{3-e^{-j\left(\omega-\frac{\pi}{17}\right)}}
\end{aligned}
$$

(15 pts) 2. Using the definition of the inverse Fourier transform, compute the CT inverse Fourier transform of

$$
\begin{aligned}
& X(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega \\
& x\left(\frac{1}{2^{k}} u[k] \delta(\omega-k \pi) .\right. \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \frac{1}{2^{k} u[k] \delta(\omega-k \pi) e^{j \omega t} d \omega} \\
&=\frac{1}{2 \pi} \sum_{k=-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\frac{1}{2}\right)^{k} u[k] \delta(\omega-k \pi) e^{j \omega t} d \omega \quad, \quad \text { sift integral when } \\
&=\frac{1}{2 \pi} \sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k} e^{j k \pi t} \\
&=\frac{1}{2 \pi} \cdot \frac{1}{1-\frac{1}{2} e^{j \pi t}}=1
\end{aligned}
$$

(15 pts) 3. Given is a DT signal $x[n]=j \cos (g[n])$ where $g[n]$ is a real signal and an odd function of n.
a) Bob claims that the Fourier transform of $x[n]$ is $\mathcal{X}(\omega)=\frac{j}{\sin \omega}$. Explain why Bob's answer is wrong.
$x[n]$ is image seven $\quad x(-\omega)=\frac{j}{\sin (-\omega)}=\frac{j}{-\sin (-w)}$ ard
$X(\omega)$ is macy $\frac{1}{3}$ odd, so $x[n]$ must be real ξ^{3} od
$x[u]$ is image. to ever
\therefore Boob is wrong
b) Alice says that the Fourier transform of $x[n]$ is $\mathcal{X}(\omega)=\frac{3}{\cos \omega}$. Could Alice be right? Explain.

$$
x(-\omega)=\frac{3}{\cos (-\omega)}=\frac{3}{\cos \omega} \text {. even }
$$

$X(\omega)$ is real $\frac{1}{3}$ even $\rightarrow X[n]$ must be rend $\frac{3}{}$ even
$x[n]$ is imag. 3, even \longrightarrow Alice is wrong.
c) Devin says that the Fourier transform of $x[n]$ is $\mathcal{X}(\omega)=\frac{j}{\left(\omega^{2}+1\right)^{2}}$. Could Devin be right? Explain.
$X_{(\omega)}$ is image. के even
\therefore Devin could be right

$$
\begin{aligned}
& x(w)=\frac{j}{\left((w)^{2}+1\right)^{2}}=\frac{j}{\left(w^{2}+1\right)^{2}} \text { even } \\
& x(w) \stackrel{?}{=} x^{*}(-w) \\
& x^{*}(-w)=\frac{-j}{\left((-w)^{2}+1\right)^{2}}=\frac{-j}{\left(w^{2}+1\right)^{2}} \neq x(w)
\end{aligned}
$$

4. A discrete-time LTI system is defined by the difference equation

$$
y[n]-\frac{3}{4} y[n-1]+\frac{1}{8} y[n-2]=2 x[n]
$$

(10 pts) a) Find the frequency response of this system. (Use the properties of the Fourier transform listed in the table to justify your answer. Do not just plug into a formula you have learned by heart.)

$$
\begin{gathered}
y[y[n]]-\frac{3}{4} e^{-j \omega} \cdot y[y[n]]+\frac{1}{8} e^{-2 j \omega} \cdot y[y[n]]=2 \mathcal{F}[x[n]] \\
y_{(\omega)}=\frac{\partial x_{(\omega)}}{\left(1-\frac{3}{4} e^{-j \omega}+\frac{1}{8} e^{-2 j \omega}\right)}=x_{(\omega)} \cdot H_{(\omega)}
\end{gathered}
$$

$$
\therefore H(\omega)=\frac{2}{1-\frac{3}{4} e^{j \omega}+\frac{1}{8} e^{-2 j \omega}}=\frac{16}{\left(e^{-j \omega}\right)^{2}-6\left(e^{-j \omega}\right)+8}
$$

$$
\begin{aligned}
A e^{j \omega}-2 A+B e^{-j \omega}-4 B & =16 \\
\omega=0,-A-3 B & =16
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{16}{\left(e^{j \omega}-2\right)\left(e^{-j \omega}-4\right)} \\
& =\frac{A / 2}{1-\frac{1}{2} e^{-j \omega}}+\frac{B / 4}{1-\frac{1}{4} e^{-j \omega}}
\end{aligned}
$$

$$
\therefore h[n]=A / 2\left(\frac{1}{2}\right)^{n} u[n]+B / 4\left(\frac{1}{4}\right)^{n} u[n]
$$

(10 pts) b) What is the unit impulse response of this system. (Justify your answer)

$$
\begin{aligned}
& y[n]=h[n] * \delta[n]=h[n] \\
&=\left[\frac{A}{2}\left(\frac{1}{2}\right)^{n}+\frac{3}{4}\left(\frac{1}{4}\right)^{n}\right] u[n]
\end{aligned}
$$

(5 pts) c) What is the Fourier transform of the output when the input is $x[n]=\left(\frac{1}{4}\right)^{n} u[n]$? (Justify your answer.)

$$
x[n]=\left(\frac{1}{4}\right)^{n} u[n] \xrightarrow{\rightrightarrows} X_{(w)}=\frac{1}{1-\frac{1}{4} e^{-j \omega}}=\frac{-4}{-4+e^{-j n}}
$$

$$
\begin{aligned}
y_{(\omega)}=f_{(\omega)} \cdot x_{(\omega)} & =\frac{64}{\left(e^{j \omega}-2\right)\left(e^{-j \omega}-4\right)^{2}} \\
& ==\frac{-A / 2}{\left(1-\frac{1}{-} e^{-j \omega}\right)}+\frac{-B / 4}{\left(1-\frac{1}{4} e^{j \omega}\right)}+\frac{-c / 4}{\left(1-\frac{1}{4} e^{-j \omega}\right)^{2}}
\end{aligned}
$$

(10 pts) d) What is the output when the input is $x[n]=\left(\frac{1}{4}\right)^{n} u[n]$? (Justify your answer)

$$
y[n]=\left[-\frac{A}{2}\left(\frac{1}{2}\right)^{n}-\frac{B}{4}\left(\frac{1}{4}\right)^{n}-\frac{c}{4}(n+1)\left(\frac{1}{4}\right)^{n}\right] u[n]
$$

(15 pts) 5. Use the properties of the Fourier transform to evaluate the following integral:

$$
\int_{-\infty}^{\infty} \frac{\sin ^{2}(4 t)}{t^{2}} d t
$$

$$
\frac{\sin w t}{\pi t} \xrightarrow{7} u(w+w)-u(w-w)
$$

$$
\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|x_{(\omega)}\right|^{2} d \omega
$$

$$
\Rightarrow \pi^{2} \int_{-\infty}^{\infty}\left|\frac{\sin 4 t}{\pi t}\right|^{2} d t=\frac{\pi}{2} \int_{-\infty}^{\infty}\left|x_{(\omega)}\right|^{2} d \omega
$$

$$
=\frac{\pi}{2} \int_{-\infty}^{\infty}[u(w+4)-u(w-4)] d w
$$

$$
=\frac{\pi}{2} \int_{-4}^{4} d w
$$

$$
=4 \pi
$$

