- 1. Prove or disprove: if f_n, g_n are uniformly convergent sequences on a set E then $f_n g_n$ is also.
- 2. Let $C(K){f : K \to \mathbb{R} : f \text{ is continuous}}$ and endow C(K) with the sup norm, i.e.

$$\|f\| := \max_{K} |f|.$$

(a) Show $\|_{-}\|$ is a norm, i.e. $d(f,g) := \|f - g\|$ is a metric, and given a constant, c, we have $\|cf\| = |c|\|f\|$.

Definition: We say $f_n \to f$ in $C(K) \iff f_n, f \in C(K)$ and $||fn - f|| \to 0.$

- (b) Show C(K) is complete.
- (c) Set K = [0, 1] and show closed and bounded is not equivalent to compact in C[0, 1].
- (d) What other conditions do you need? An easy way to remember Arzela-Ascoli's theorem is that is gives sufficient conditions for compactness of subsets of C[0, 1]. Prove this; namely,

Show that if $A \subset C[0,1]$ is closed, bounded (both in the sup norm), and equicontinuous, A is compact.

- (e) (Another example). Let $A := \{f_n(x) = \frac{1}{nx+1}\}$, and show it is closed (every point is isolated!) and bounded but not compact (hence not equicontinuous!)).
- 3. Let $f_n \to f$ uniformly, with $\operatorname{all} f_n$ and f differentiable on [0, 1] (with the usual left and right hand limits for derivatives at 0 and 1 respectively). True or false:
 - (a) $\int f_n \to \int f$.
 - (b) $f'_n \to f'$
 - (c) Show (b) holds if we also assume f'_n converges uniformly to a continuous g.