Bridges

Dingdongs of Glory

1. Let (X, \mathcal{F}, μ) be a probability space and suppose $f \in L^1(\mu)$. Prove that

$$\lim_{p \to 0} \|f\|_p = \exp\left(\int_X \log |f| d\mu\right).$$

Hint: $\forall x > 0, -\log(x)$ is convex, $\log(x) \le x - 1$, and $\phi(p) = \frac{x^p - 1}{p}$ is monotone increasing in p.

- 2. Let (X, \mathcal{F}, μ) be a probability space. Suppose $f \in L^{\infty}(\mu)$ and $||f||_{\infty} > 0$.
 - (a) Prove that

$$\lim_{n \to \infty} \|f\|_n = \|f\|_{\infty}.$$

(b) Prove that

$$\lim_{n \to \infty} \frac{\int_X |f|^{n+1} d\mu}{\int_X |f|^n d\mu} = \|f\|_{\infty}.$$

- (c) Are the results above true for any finite measure space? for any measure space?
- 3. Let (X, \mathcal{M}, μ) be a measure space and let $1 . Assume that <math>f: X \to \mathbb{R}$ is \mathcal{M} -measurable and satisfies:

$$\mu(\{x : |f(x)| > y\}) \le \frac{c_0}{y^p}$$

where c_0 is independent of y > 0. Let $1 \le r < p$. Show that

$$\int_X |f|^r d\mu \le c\mu(X)^{1-r/p}$$

where c depends only on c_0, r, p .

4. Let $f \in C([0,1])$. Show that there is a sequence of odd polynomials $\{p_n(x)\}$ with $p_n \to f$ uniformly on [0,1] if and only if f(0) = 0.

5. Suppose that $f_n(x)$ is a sequence of functions in AC[0,1] which are increasing (in x) and for which $f_n(0) = 0$ for all n. Let

$$g(x) = \sum_{1}^{\infty} f_n(x).$$

Prove that if $g(1) < \infty$, then $g \in AC[0, 1]$.

6. Let (X, \mathcal{F}, μ) be a finite measure space and let $1 . Suppose <math>f_n$ is a sequence of measurable functions in $L^p(\mu)$ with $||f_n||_p \leq 1$ for all n and $f_n \to f$ a.e. Prove that

$$\int_X f_n g \ d\mu \to \int_X fg \ d\mu$$

for all $g \in L^q(\mu)$, where q is the conjugate index of p.

7. Discuss the convergence of the sequence

$$\left\{\int_0^1 x^{1/n} |f(x)| dx\right\}_{n=1}^\infty$$

for $f \in L^1([0,1])$.

8. Let (X, \mathcal{A}, μ) be a finite measure space. If f is \mathcal{A} -measurable, let

 $E_n = \{ x \in X : n - 1 \le |f(x)| < n \}.$

Show that $f \in L^1$ if and only if $\sum_{n=1}^{\infty} n\mu(E_n) < \infty$.