- 1. For each function given below, do the following:
 - i. Sketch f(x, y)

b.

- ii. Express f(x, y) in terms of the special functions given in class.
- iii. Find its CSFT F(u, v) using transform pairs and properties.
- iv. Sketch F(u, v) in enough detail to show that you know what it looks like.

a.
$$f(x,y) = \begin{cases} \cos(2\pi(x-y)), & x^2 + y^2 < 4 \\ 0, & \text{else} \end{cases}$$

2. The 2-D signal $f(x,y) = 1 + \cos(2\pi(3x + y))$ is sampled with an ideal sampler at 4 samples/inch to generate the signal

$$f_s(x,y) = \sum_m \sum_n f(0.25m, 0.25n)\delta(x - 0.25m, y - 0.25n)$$

This signal is then convolved with sinc(4x,4y) to yield the reconstructed signal $f_r(x,y)$.

- a. Sketch f(x, y) showing a top view of the *x*-*y* plane in which the points where f(x, y) = 1 are clearly labeled.
- b. Find a simple expression for $f_r(x,y)$.
- c. Sketch $f_r(x,y)$ showing a top view of the *x*-*y* plane in which the points where $f_r(x,y) = 1$ are clearly labeled.

m									
n	-1	0	1						
1	-0.125	0.5	-0.125						
0	-0.25	1.0	-0.25						
-1	-0.125	0.5	-0.125						

3. Consider a 3×3 FIR filter with coefficients h[m,n]

- a. Find a difference equation that can be used to implement this filter.
- b. Find the output image that results when this filter is applied to the input image shown below:

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	0
0	0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	1	1	0	0	0
0	0	1	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	1	0
0	0	0	0	0	0	0	0	0	0	0

- c. Find a simple expression for the frequency response (DSFT) $H(\mu, \nu)$ of this filter.
- d. Plot $H(\mu, \nu)$ along the μ axis ($\nu = 0$), along the ν axis ($\mu = 0$), along the line $\mu = \nu$, and along the line $\mu = -\nu$.
- e. Discuss the relation between your answer to part b. and the filter frequency response.