
Purdue University: ECE438 - Digital Signal Processing with Applications 1

ECE438 - Laboratory 7b:
Digital Filter Design

By Prof. Charles Bouman and Prof. Mireille Boutin
Fall 2015

1 Introduction

This is the second part of a two week laboratory in digital filter design. The first week of
the laboratory covered some basic examples of FIR and IIR filters, and then introduced the
concepts of filter design. In this week we will cover more systematic methods of designing
both FIR and IIR filters.

2 Filter Design Using Standard Windows

Download DTFT.m
https://engineering.purdue.edu/VISE/ee438L/lab5/data/DTFT.zip

We can generalize the idea of truncation by using different windowing functions to trun-
cate an ideal filter’s impulse response. Note that by simply truncating the ideal filter’s
impulse response, we are actually multiplying (or “windowing”) the impulse response by a
shifted rect() function. This particular type of window is called a rectangular window. In
general, the impulse reponse h(n) of the designed filter is related to the impulse response
hideal(n) of the ideal filter by the relation

h(n) = w(n)hideal(n), (1)

where w(n) is an N -point window. We assume that

hideal(n) =
ωc
π

sinc
(
ωc
π

(
n− N − 1

2

))
, (2)

Questions or comments concerning this laboratory should be directed to Prof. Mireille Boutin, School
of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-0728;
mboutin@purdue.edu

Purdue University: ECE438 - Digital Signal Processing with Applications 2

where ωc is the cutoff frequency and N is the desired window length.

The rectangular window is defined as

w(n) =

{
1 n = 0, 1, . . . , N − 1
0 otherwise

The DTFT of w(n) for N = 21 is shown in Fig. 1. The rectangular window is usually not
preferred because it leads to the large stopband and passband ripple as shown in Fig. 2.

−4 −3 −2 −1 0 1 2 3 4
−40

−30

−20

−10

0

10

20

30

Frequency Response of Truncation Window

M
a

g
n

it
u

d
e

 i
n

 d
B

Frequency Radians per Sample

Figure 1: DTFT of a rectangular window of length 21.

−4 −3 −2 −1 0 1 2 3 4
−50

−40

−30

−20

−10

0

10

Magnitude of Truncated Filter Response

M
a

g
n

it
u

d
e

 i
n

 d
B

Frequency in Radians per Sample

Figure 2: Frequency response of low-pass filter, designed using the truncation method.

More desirable frequency characteristics can be obtained by making a better selection
for the window, w(n). In fact, a variety of raised cosine windows are widely used for this
purpose. Some popular windows are listed below.

1. Hanning window (as defined in Matlab, command hann(N)):

w(n) =

{
0.5− 0.5 cos 2πn

N−1 n = 0, 1, . . . , N − 1

0 otherwise

Purdue University: ECE438 - Digital Signal Processing with Applications 3

2. Hamming window

w(n) =

{
0.54− 0.46 cos 2πn

N−1 n = 0, 1, . . . , N − 1

0 otherwise

3. Blackman window

w(n) =

{
0.42− 0.5 cos 2πn

N−1 + 0.08 cos 4πn
N−1 n = 0, 1, . . . , N − 1

0 otherwise

In filter design using different truncation windows, there are two key frequency domain
effects that are important to the design: the transition band roll-off, and the passband and
stopband ripple (see Fig. 3 below). There are two corresponding parameters in the spectrum
of each type of window that influence these filter parameters. The filter’s roll-off is related
to the width of center lobe of the window’s magnitude spectrum. The ripple is influenced
by the ratio of the mainlobe amplitude to the first sidelobe amplitude (or difference if using
a dB scale). These two window spectrum parameters are not independent, and you should
see a trend as you examine the spectra for different windows. The theoretical values for the
mainlobe width and the peak-to-sidelobe amplitude are shown in Table 1.

Window (length N) Mainlobe width Peak-to-sidelobe
amplitude (dB)

Rectangular 4π/N −13dB
Hanning 8π/N −32dB
Hamming 8π/N −43dB
Blackman 12π/N −58dB

Table 1: Approximate spectral parameters of truncation windows. See [1].

Plot the rectangular, Hamming, Hanning, and Blackman window functions of length
21 on a single figure using the subplot command. You may use the Matlab commands
hamming, hann, and blackman. Then compute and plot the DTFT magnitude of each of the
four windows. Plot the magnitudes on a decibel scale (i.e., plot 20 log10 |W (ejω)|). Download
and use the function DTFT.m to compute the DTFT.

Hint: Use at least 512 sample points in computing the DTFT by typing the command
DTFT(window,512). Type help DTFT for further information on this function.

Measure the null-to-null mainlobe width (in rad/sample) and the peak-to-sidelobe am-
plitude (in dB) from the logarithmic magnitude response plot for each window type. The
Matlab command zoom is helpful for this. Make a table with these values and the theoretical
ones.

Now use a Hamming window to design a lowpass filter h(n) with a cutoff frequency of
ωc = 2.0 and length 21. Note: You need to use equations (1) and (2) for this design. In
the same figure, plot the filter’s impulse response, and the magnitude of the filter’s DTFT
in decibels.

Purdue University: ECE438 - Digital Signal Processing with Applications 4

INLAB REPORT:

1. Submit the figure containing the time domain plots of the four windows.

2. Submit the figure containing the DTFT (in decibels) of the four windows.

3. Submit the table of the measured and theoretical window spectrum parameters. Com-
ment on how close the experimental results matched the ideal values. Also comment
on the relation between the width of the mainlobe and the peak-to-sidelobe amplitude.

4. Submit the plots of your designed filter’s impulse response and the magnitude of the
filter’s DTFT.

3 Filter Design Using the Kaiser Window

Download nspeech2.mat
https://engineering.purdue.edu/VISE/ee438L/lab5/data/nspeech2.zip

1

1+δp

1−δ

δs

passband stopband

transition

region

ω ω
sc

p

πω
p

Figure 3: Tolerance specifications for the frequency response of a filter.

The standard windows of Section 2 are an improvement over simple truncation, but
these windows still do not allow for arbitrary choices of transition bandwidth and ripple. In
1964, James Kaiser derived a family of near-optimal windows that can be used to design
filters which meet or exceed any filter specification. The Kaiser window depends on two
parameters: the window length N , and a parameter β which controls the shape of the
window. Large values of β reduce the window sidelobes and therefore result in reduced
passband and stopband ripple. The only restriction in the Kaiser filter design method is
that the passband and stopband ripple must be equal in magnitude. Therefore, the Kaiser
filter must be designed to meet the smaller of the two ripple constraints:

δ = min{δp, δs}

Purdue University: ECE438 - Digital Signal Processing with Applications 5

The Kaiser window function of length N is given by

w(n) =

I0

(
β

√
n(N−1−n)

N−1

)
I0(β)

n = 0, 1, . . . , N − 1

0 otherwise

where I0(·) is the zero’th order modified Bessel function of the first kind, N is the length of
the window, and β is the shape parameter.

Kaiser found that values of β and N could be chosen to meet any set of design parameters,
(δ, ωp, ωs), by defining A = −20 log10 δ and using the following two equations:

β =

0.1102(A− 8.7) A > 50
0.5842(A− 21)0.4 + 0.07886(A− 21) 21 ≤ A ≤ 50
0.0 A < 21

(3)

N =

⌈
1 +

A− 8

2.285(ωs − ωp)

⌉
(4)

where d·e is the ceiling function, i.e. dxe is the smallest integer which is greater than or equal
to x.

To further investigate the Kaiser window, plot the Kaiser windows and their DTFT
magnitudes (in dB) for N = 21 and the following values of β:

• β = 0

• β = 1

• β = 5

For each case use at least 512 points in the plot of the DTFT.

Hint: To create the Kaiser windows, use the Matlab command kaiser(N,beta) command
where N is the length of the filter and beta is the shape parameter β. To insure at least 512
points in the plot use the command DTFT(window,512) when computing the DTFT.

INLAB REPORT: Submit the plots of the 3 Kaiser windows and the magnitude of their
DTFT’s in decibels. Comment on how the value β affects the shape of the window and the
sidelobes of the DTFT.

Next use a Kaiser window to design a low pass filter, h(n), to remove the noise from the
signal in nspeech2.mat using equations (1) and (2). To do this, use equations (3) and (4) to
compute the values of β and N that will yield the following design specifications:

ωp = 1.8

ωc = 2.0

ωs = 2.2

δp = 0.05

δs = 0.005

Purdue University: ECE438 - Digital Signal Processing with Applications 6

−4 −3 −2 −1 0 1 2 3 4
−30

−20

−10

0

10

20

30

Magnitude of DTFT for Speech Signal in Noise

M
a

g
n

it
u

d
e

 i
n

 d
B

Frequency in Radians per Sample

Figure 4: DTFT of a section of noisy speech.

The low pass filter designed with the Kaiser method will automatically have a cut-off
frequency centered between ωp and ωs.

ωc =
ωp + ωs

2

Plot the magnitude of the DTFT of h(n) for |ω| < π . Create three plots in the same
figure: one that shows the entire frequency response, and ones that zoom in on the passband
and stopband ripple, respectively. Mark ωp, ωs, δp, and δs on these plots where appropriate.
Note: Since the ripple is measured on a magnitude scale, DO NOT use a decibel scale on
this set of plots.

From the Matlab prompt, compute the stopband and passband ripple (do not do this
graphically). Record the stopband and passband ripple to three decimal places.

Hint: Find the value of the DTFT at frequencies corresponding to the passband using the
command H(abs(w)<=1.8) where H is the DTFT of h(n) and w is the corresponding vector
of frequencies. Then use this vector to compute the passband ripple. Use a similar procedure
for the stopband ripple.

Filter the noisy speech signal in nspeech2.mat using the filter you have designed. Then
compute the DTFT of 400 samples of the filtered signal starting at time n = 20, 001 (i.e.
20001:20400). Plot the magnitude of the DTFT samples in decibels versus frequency in
radians for |ω| < π. Compare this with the spectrum of the noisy speech signal shown
in Fig. 4. Play the noisy and filtered speech signals back using sound and listen to them
carefully.

Purdue University: ECE438 - Digital Signal Processing with Applications 7

INLAB REPORT: Do the following:

1. Submit the values of β and N that you computed.

2. Submit the three plots of the filter’s magnitude response. Make sure the plots are
labeled.

3. Submit the values of the passband and stopband ripple. Does this filter meet the design
specifications?

4. Submit the magnitude plot of the DTFT in dB for the filtered signal. Compare this
plot to the plot of Fig. 4.

5. Comment on how the frequency content and the audio quality of the filtered signal
have changed after filtering.

4 FIR Filter Design Using Parks-McClellan Algorithm

Help on Matlab commands for Parks-McClellan filter design
https://engineering.purdue.edu/VISE/ee438L/matlab/help/pdf/firpm.pdf

Download nspeech2.mat
https://engineering.purdue.edu/VISE/ee438L/lab5/data/nspeech2.zip

Kaiser windows are versatile since they allow the design of arbitrary filters which meet
specific design constraints. However, filters designed with Kaiser windows still have a number
of disadvantages. For example,

• Kaiser filters are not guaranteed to be the minimum length filter which meets the
design constraints.

• Kaiser filters do not allow passband and stopband ripple to be varied independently.

Minimizing filter length is important because in many applications the length of the
filter determines the amount of computation. For example, an FIR filter of length N may
be directly implemented in the time domain by evaluating the expression

y(n) =
N−1∑
k=0

x(n− k)h(k) . (5)

For each output value y(n) this expression requires N multiplies and N − 1 additions.

Purdue University: ECE438 - Digital Signal Processing with Applications 8

Oftentimes h(n) is a symmetric filter so that h(n) = h(N − 1 − n). If the filter h(n) is
symmetric and N is even, then (5) may be more efficiently computed as

y(n) =
N/2−1∑
k=0

(x(n− k) + x(n−N + 1 + k))h(k) .

This strategy reduces the computation to N/2 multiplies and N − 1 adds for any value of
N1. Note that the computational effort is linearly proportional to the length of the filter.

The Kaiser filters do not guarantee the minimum possible filter length. Since the filter
has equal passband and stopband ripple, it will usually exceed design requirements in one of
the two bands; this results in an unnecessarily long filter. A better design would allow the
stopband and passband constraints to be specified separately.

In 1972, Parks and McClellan devised a methodology for designing symmetric filters that
minimize filter length for a particular set of design constraints {ωp, ωs, δp, δs}. The resulting
filters minimize the maximum error between the desired frequency response and the actual
frequency response by spreading the approximation error uniformly over each band. The
Parks and McClellan algorithm makes use of the Remez exchange algorithm and Chebyshev
approximation theory. Such filters that exhibit equiripple behavior in both the passband and
the stopband, and are sometimes called equiripple filters.

As with Kaiser filters, designing a filter with the Parks and McClellan algorithm is a
two step process. First the length (i.e. order) of the filter must be computed based on the
design constraints. Then the optimal filter for a specified length can be determined. As
with Kaiser windows, the filter length computation is approximate so the resulting filter
may exceed or violate the design constraints. This is generally not a problem since the filter
can be redesigned for different lengths until the constraints are just met.

The Matlab command for computing the approximate filter length is
[n,fo,mo,w] = firpmord(f,m,ripple,2*pi)

where the inputs are:

f - vector containing an even number of band edge frequencies. For a simple low
pass filter, f=[wp,ws], where wp and ws are the passband and stopband frequencies,
respectively.

m - vector containing the ideal filter magnitudes of the filter in each band. For a simple
low pass filter m=[1,0].

ripple - vector containing the allowed ripple in each band. For a simple low pass
filter ripple=[delta_p,delta_s], where delta_p and delta_s are the passband and
stopband ripples, respectively.

2*pi - value, in radians, that corresponds to the sampling frequency.

1The advantages of using such symmetries varies considerably with the implementation and application.
On many modern computing architectures the computational cost of adds and multiplies are similar, and
the overhead of control loops may eliminate the advantages of reduced operations.

Purdue University: ECE438 - Digital Signal Processing with Applications 9

The outputs of the command are n = filter length - 1, and the vectors fo, mo, and
w which are intermediate filter parameters.

Once the filter order, n, is obtained, the Matlab command for designing a Parks-McClellan
filter is b = firpm(n,fo,mo,w). The inputs n, fo, mo, and w are the corresponding outputs
of firpmord, and the output b is a vector of FIR filter coefficients such that

H(z) = b(1) + b(2)z−1 + · · ·+ b(n+ 1)z−n

(What is the impulse response of this filter?)

Read the help document on using Matlab to implement the Parks-McClellan algorithm
for further information.

Now design a symmetric FIR filter using firpmord and firpm in Matlab to meet the design
specifications given in Section 3. Compute the DTFT of the filter’s response for at least 512
points, and use this result to compute the passband and stopband ripple of the filter that
was designed. Adjust the filter length until the minimum order which meets the design
constraints is found. Plot the magnitude of the DTFT in dB of the final filter design.

INLAB REPORT:
Do the following:

1. Submit the final measured values of filter length, passband ripple, and stopband ripple.
How accurate was the filter order computation using Matlab’s firpmord? How does the
length of this filter compare to the filter designed using a Kaiser window?

2. Submit the plot of the filter’s DTFT. How does the frequency response of the Parks-
McClellan filter compare to the filter designed using the Kaiser window? Comment on
the shape of both the passband and stopband.

Use the filter you have designed to remove the noise from the signal nspeech2.mat. Play
the noisy and filtered speech signals back using sound and listen to them carefully. Com-
pute the DTFT of 400 samples of the filtered signal starting at time n = 20, 001 (i.e.
20001:20400). Plot the magnitude of the DTFT in decibels versus frequency in radians for
|ω| < π. Compare this with the spectrum of the noisy speech signal shown in Fig. 4, and
also with the magnitude of the DTFT of the Kaiser filtered signal.

INLAB REPORT:
Submit the plot of the DTFT magnitude for the filtered signal. Comment on how the audio
quality of the signal changes after filtering. Also comment on any differences in audio quality
between the Parks-McClellan filtered speech and the Kaiser filtered speech.

Purdue University: ECE438 - Digital Signal Processing with Applications 10

5 Design of Discrete-Time IIR Filters Using Numerical

Optimization

In this section, we consider the design of discrete-time IIR filters through the direct search of
filter parameters that will minimize a specific design criterion. Such “brute force” approaches
to filter design have become increasingly more popular due to the wide availability of high
speed computers and robust numerical optimization methods.

Typically, numerical approaches to filter design have two parts. First, they design a
cost, or error criterion. This criterion is a measure of the difference between the ideal filter
response and the response of the computed or “approximate” filter. The goal is to find
the approximate filter with the lowest cost (error). Mean square error is a popular cost
criterion. The second part is to minimize the cost with respect to the filter parameters. We
will perform the required numerical optimization with the fminsearch function in Matlab’s
Optimization Toolbox.

In order to formulate a cost criterion, we must first select a model for the discrete-time
filter of interest. There are many ways of doing this, but we will use the coefficients of
rational transfer function to model (or parameterize) the set of second order IIR filters. In
this case, the elements of the vector θ = [θ1, θ2, θ3, θ4, θ5] are the coefficients of the transfer
function

Hθ(z) =
θ1 + θ2z

−1 + θ3z
−2

1 + θ4z−1 + θ5z−2
. (6)

Using this parameterization, we may then define a function Cost(θ) which is the “cost” of
using the filter Hθ(z).

To illustrate this numerical optimization approach, we will design a digital filter that
compensates for the roll-off due to the sample-and-hold process in an audio CD player. In
lab 4, we saw that the sample-and-hold operation in a conventional D/A converter causes
the reconstructed signal to be filtered by the function

Hsh(e
jω) = sinc

(
ω

2π

)
for |ω| < π

One method of reducing this distortion is to digitally “pre-filter” a signal with the inverse
transfer function, 1/Hsh. This filter 1/Hsh pre-distorts the audio signal so the reconstructed
signal has the desired frequency response. We would like to approximate the filter 1/Hsh

using the second order filter of equation (6).

For an audio CD player, the magnitude of the frequency response is generally considered
to be more important than the phase. This is because we are not perceptually sensitive to
phase distortion in sound. Therefore, we may choose a cost function which computes the
total squared error between the magnitudes of the desired pre-filter response, 1/Hsh(e

jω),
and the second order filter Hθ(e

jω):

Cost(θ) =
∫ π

−π

(∣∣∣∣∣ 1

Hsh(ejω)

∣∣∣∣∣− ∣∣∣Hθ(e
jω)
∣∣∣)2

dω (7)

The θ parameters that minimize this cost function will be the parameters of our designed

Purdue University: ECE438 - Digital Signal Processing with Applications 11

filter. A more complex approach might also account for the filter phase, but for simplicity
we will only try to match the filter magnitudes.

After the filter is designed, we may compute the difference between the CD player’s
frequency response in dB and the ideal desired response in dB that the CD player should
have:

ErrdB(ω) = 20 log10

(
Hsh(e

jω)|Hθ∗(ejω)|
)

(8)

where θ∗ is the optimized value of θ and Hθ∗(ejω) is the optimum second-order filter.

Do the following to perform this filter design:

• Write a Matlab function prefilter(w,theta) which computes the frequency response
Hθ(e

jω) from equation (6) for the vector of input frequencies w and the parameter vector
theta.

• Write a Matlab function Cost(theta) which computes the total squared error of equa-
tion (7). Use a sampling interval ∆ω = 0.01 for the functions Hθ(e

jω) and 1/Hsh(e
jω).

• Use the command fminsearch from Matlab’s Optimization Toolbox to compute the
value of the parameter θ which minimizes Cost(theta). The function fminsearch has
the syntax X = fminsearch(’function_name’,initial_value) where function_name
is the name of the function being minimized (Cost), initial_value is the starting
value for the unknown parameter, and X is the minimizing parameter vector. Choose
an initial value of (θ1, θ2, θ3, θ4, θ5) = (1, 0, 0, 0, 0) so that Hθ(e

jω) = 1.

• Use the subplot command to plot the following three functions on the interval [−π, π].

– The desired filter magnitude response 1/Hsh(e
jω).

– The designed IIR filter magnitude response |Hθ∗(ejω)|.
– The error in decibels, from equation (8).

INLAB REPORT:
Do the following:

1. Submit the printouts of the code for the two Matlab functions prefilter.m and Cost.m.

2. Give an analytical expression for the optimized transfer function Hθ∗(z) with the co-
efficients that were computed.

3. Submit the three plots. On the error plot, mark the frequency ranges where the
approximation error is high.

Purdue University: ECE438 - Digital Signal Processing with Applications 12

References

[1] J. G. Proakis, D. G. Manolakis, Digital Signal Processing, 3rd ed., Prentice-Hall, 1996.

