
Solution 1: 
As discussed in class, the cost function J(w) was chosen for minimization to obtain the 

optimal classifier between two classes because it helps ensure that the difference between 

means is large relative to some measure of the standard deviations within the classes. The 

other cost function namely with SW=Inxn, considers only the means. Therefore, a classifier 

based on J(w) will, in principle give lower error rate on the data on which it is trained. 

 

For experimenting with this, I took a real data set from UCI-Machine Learning 

Repository. The data is about “Pen-based recognition of hand-written digits”. Although 

the original data set contains 10 classes, and 16 features, I chose two of the classes (class 

0 and 3) and with 3 feature vectors (1, 8, 15) which appear to be linearly separable. In the 

following discussion, I refer the class labeled ‘0’ as class 1 and class labeled ‘3’ as class 

2. 

 

Training Samples in 3 dimensions 



 
 

 

As we see from the above figure, the data is reasonably linearly separable on the basis of 

chosen features, whether we take features1 & 8 or 1, 8 &15. 

Above shown data is the training data. 

Below I show test data for the same. 

 

Training Samples in 2 dimensions 

Test Samples in 3 dimensions 



 
 

Summary Information of the number of samples 

Number of samples Class 1 Class 2 Total 

Training samples 780 719 1499 

Test samples 363 336 699 

 

Result of Fisher Linear Discriminant (FLD) on 3 dimensions: 
m1 = [ 33.8846,  6.4205,   19.1462] 

m2 = [ 25.0821,  60.6815,  3.1794] 

m = [ 29.6624,  32.4470,  11.4877] 

σ 

Σ1 =  [512.5662   -5.8669  186.8181 

    -5.8669  138.6180  -24.8320 

186.8181  -24.8320  373.6889] 

 

Σ2 = [388.7457  -45.3828  -78.7727 

 -45.3828   66.3422   18.5815 

 -78.7727   18.5815   95.0568] 

 

ω = 1.0e-003 * [ -0.0116,  -0.3494,  0.0414] 

ω0 =  0.0112 

Error rate on the training samples = 0.0200 

Error rate on the test samples = 0.0343 

Test Samples in 2 dimensions 



 
 

 
Result of Mean-Difference Discriminant (MDD) on 3 dimensions: 
 

m1 =[ 33.8846,   6.4205,  19.1462] 

m2 = [ 25.0821,  60.6815,  3.1794] 

m = [ 29.6624, 32.4470,  11.4877] 



 

Σ1 =  [  512.5662   -5.8669  186.8181 

-5.8669  138.6180  -24.8320 

   186.8181  -24.8320  373.6889 ] 

 

Σ2 = [ 388.7457  -45.3828  -78.7727 

  -45.3828   66.3422   18.5815 

   -78.7727   18.5815   95.0568 ] 

ω =  [  8.8026,  -54.2610,  15.9667] 

ω0 =  1.3161e+003 

 

Training error rate for MDD = 0.0273 

Test error rate for MDD = 0.0186 

 

 

  
 

Training Data Classification 



 
 

The bold-appearing line in between is the edge of separating hyper-plane. The line joining 

m1 and m2 passes perpendicular through this hyper-plane.  

 

Here, we observe that 

Training error for MDD > Training error for FLD, as expected from theory. 

Test error for MDD < Test error for FLD! 
This may happen when the test data behaves quite differently from the training data. 

 

We can verify if this is the reason here by comparing the mean and variance of test data. 

m1 = [  38.5702,   9.1708,   28.4353] 

m2 = [ 24.1488,   60.3929,   4.0863] 

From the mean vectors for test data, it appears that, if anything, the test data are further 

apart in comparison with the training data. This means that FLD should have performed 

better than MDD, even on the test cases. But what we observe is the opposite. I don’t 

know of any precise reason of this, but one guess is that the samples which lie as 

exceptions outside the main distributions, cause this discrepancy. Since, our classifier is 

based on mean of distribution, and not on support vectors (like in SVM), it fails to 

resolve this. 

 

But one thing that is important to observe is that FLD does perform better on the data on 

which it is trained. i.e. Training samples are always better classified by FLD, in 

comparison with FLD. The following experiment shows this 

 

Now, let us determine FLD and MDD weight vectors for test samples themselves. 

Applying FLD: 
ω = 1.0e-003 * [  0.0104,   -0.6097,   0.2425 ] 

Test Data Classification 



ω0 =   0.0162 

Training error rate (over the test samples) = 0.0243 

Test error rate (over the training samples) = 0.0267 

 

Applying MDD: 
ω =   [ 14.4214,  -51.2221,    24.3490] 

ω0 =   867.2749 

Training error rate (over the test samples) = 0.0257 

Test error rate (over the training samples) = 0.0380 

 

Again we see that on reversing the test and training data, FLD gives better accuracy over 

the data used for training. 

  

If we see the figures above showing separation between classes by a plane, we see that 

there are blue points on the red side also, which could easily be taken on that side by 

choosing ω0 properly. Again, the reason behind this deficiency in performance of this 

method, is that it depends on means and variances (assuming homogeneous distribution 

of data), and does not take individual samples into account, as a support vector machine 

does. My guess is that a SVM would do better at this choice. 

 

Solution 2 
For this problem, I take a different dataset from the same source as cited above.  

Classes: 5, 8 

Features: <varying number of features ranging from 1 to 16> 

 First, I take feature {1}, then {1,2}, and add features in this way.  

 

Neural Network Classification 

 
For Neural Network Classification, I use Matlab’s toolbox interfaced with newff and 

train. It provides for the choice of number of hidden layers, and number of neurons in 

each layer.  

 

Matlab Program Options Used 

Matlab interface functions newff, train 

Transfer function for the hidden layers tansig  

Transfer function for the output layer Purelin 

Back-propagation network training 

function 

Trainlm 

Back-propagation weight/bias learning 

function 

Learngdm 

 

 



The procedure used for training is back-propagation based on Levenberg-Marquardt 

optimization. It is an iterative technique locating a local minimum of a multivariate 

function that is expressed as the sum of squares of several non-linear, real-valued 

functions by updating weight and bias values in the network. 

 

 

Experiment 1 
First experiment, I performed was to test the effect of number of dimensions on accuracy 

of the classifier. As discussed previously, this depends on the dataset. In my case, the 

dataset was not so strongly correlated, (as we will see for three dimensions) therefore, 

with increase in the dimensionality of feature vectors, the accuracy grew.  

The network consisted of one hidden layer, with 20 neurons. 

Following graph shows the resulting error rates. 

 

 
From the above graph, we see that for dimensions <= 3, the test error rate is less than 

training error rate. This is because of the fact that test data is more well-behaved (i.e. 

grouped together separate from the complementary class) in comparison with training 

data. 

This is shown in 3D below. 
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Training error rate 

Test error rate 



 
 

 

 
 

 

Experiment 2: 
The next experiment I performed by varying the number of layers in the neural network. 

Figure showing test samples projected in 3 dimensions 

are more ‘classifiable’ than training samples 

Figure showing training samples projected in 3 

dimensions are not ‘well-classifiable’ 



As we see in the result of previous experiment, error rate is quite high for 

Dimensions<=3, I tried in this experiment to increase the number of layers from 1 

through 5, each layer containing 5 neurons, and try to classify samples projected in 3 

dimensions. 

Following graph shows the result: 
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Training error rate

Test error rate

 
As discussed in the class, the error rate does not decrease with increasing the number 

of layers, because theoretically a one-hidden-layer network is as powerful as a multiple-

hidden-layer network. 

 

Experiment 3: 
The third experiment is to compare error rates achieved by neural network on the original 

dataset of Problem 1, with Fisher Linear Discriminant.  

 

 Training error rate Test error rate 

Neural Network classifier 0.0087 0.0286 

Fisher Linear Discriminant 0.0200 0.0343 

 

The above table shows that error rates are smaller for neural network. This is because of 

two reasons. 

i) FLD is only a linear classifier and forms a hyperplane. Neural Network 

virtually forms a hypersurface. 

ii) Neural Network performs well when the dataset is big. Here we have ~1500 

samples, which gives the Neural network sufficient information about the 



spread of data 

 

 

SVM Classification 

 
The tool used for SVM classification is SVM light, by Cornell University. It is a C 

program. Along with classification it also solves the problem of regression and ranking, 

but I use it here only to do the classification. It is quite fast, being in C, and because it 

does not output any pictorial representation of classifier. 

 

Experiment 1 
The first experiment I did with SVM is the same as first experiment of Neural network 

classification, i.e. vary the dimensions. The data set is the same as used in Neural 

Network problem. 

Following graph shows the summarized results: 

 

Error Rate vs Dimensionality
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Both training and test error rates decrease with increase in dimensions. This is 

because of the dataset we have.  

 



Number of Support Vectors vs Dimensionality
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Number of support vectors identified for classification decrease slightly with 

increase in dimensionality. 
 

Experiment 2: 
The next experiment is to compare the error rates of SVM with Neural Network 

classifier. The following graph shows this. 

 



SVM Classification vs Neural Network Classification
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Error rates achieved by Neural Network are lower than SVM because SVM finds a single 

discriminating hypersurface. The separating hypersurface determined by Neural Network 

is better than the separating hypersurface determined by SVM, because of having more 

freedom. 

 

Experiment 3: 
The next experiment is to compare the error rate achieved by SVM over the original 

dataset of problem 1, with error rates achieved by Neural Network and FLD. 

 

 Training error rate Test error rate 

Support Vector Machine 0.0153 0.0215 

Neural Network classifier 0.0087 0.0286 

Fisher Linear Discriminant 0.0200 0.0343 

 

The table shows that over the original dataset of problem 1,  

Neural Network > SVM > FLD 

 

Solution 3: 
1) Parzen Window Method (PWM) 

Experiment 1: The first experiment is to design a parzen window method-based 

density estimation program. Since, in PWM, we have to choose volume according to 

the number of samples, /V iα= , I had to select an appropriate value for the 

constant of proportionality α . The measure of nearness is based on Euclidean 



distance, because it seems OK for the dataset I have, and the shape of window is 

cubic. 

I first apply this density estimation over 1D Gaussian. For this problem α =1 was 

sufficient, because the data was synthetically generated from a known distribution, so 

we had a good number of samples everywhere. 

  

Code 
x0=[0]; 
X=[]; 
Dimension=1; 
p_true=1/sqrt(2*pi); 
alpha=1; 
i=0; 
flag=1; 
while flag==1 
    x=random('norm',0,1,Dimension,1); 
    X=[X,x]; 
    i=i+1; 
    V=alpha/sqrt(i); 
    h=(V)^(1/Dimension); 
    ki=0; 
    for j=1:i 
        tempflag=1; 
        for k=1:Dimension 
            if abs(X(k,j))> h/2 
                tempflag=0; 
            end 
            if tempflag==1 
                ki=ki+1; 
            end 
        end 
    end 
    if mod(i,10000)==0 
        if Dimension==1, 
            [tempn,temploc]=hist(X,15); 
            figure;plot(temploc,tempn/i,'g'); 
        end 
         pix=ki/(i*V) 
         p_true 
         ki,V 
         i 
         pause(); 
    end 
    close(); 
end 
 

The result is as follows: 



 
The density was estimated at mean point (x=0) 

Value estimated by PWM = 0.4300 

Theoretical value = 0.3989 

 

Experiment 2: 
The next experiment is to determine density over space containing my training and 

test data. The dataset is the same as in problem 1, which was also used for problem 2. 

The sample space is of 2 dimensions, representing feature space of feature vectors 

{1,8}. Because the dataset is real, and not well distributed, I had to take α =10000 

(equal to actual volume of entire space) to make sure that most of the time, there are 

atleast some (>0) samples in the selected region. 

I generate density estimates over all points in the space containing training data, as 

shown in following figures. 

 

 

 



 
 

 

 
 



 
 

 

Code for PWM-based density estimation 
Dimension=2;alpha=10000; 
train=uint32(load('train.dat')); 
[N_train,temp]=size(train); 
I1=find(train(:,4)==0); 
I2=find(train(:,4)==3); 
Density1=zeros(101,101); 
Density2=zeros(101,101); 
V=alpha/sqrt(N_train); 
h=V^(1/Dimension); 
for m=0:100 
  for n=0:100 
    x=double([m,n]); 
    n1=0;n2=0; 
    for j=1:N_train 
        y=double(train(j,1:Dimension)); 
        if max(abs(x-y))<h/2 
            if train(j,4)==0 
                n1=n1+1; 
            else n2=n2+1; 
            end 
        end 
    end 
    pw1x=n1/(numel(I1)*V); 
    pw2x=n2/(numel(I2)*V); 
    Density1(m+1,n+1)=pw1x; 
    Density2(m+1,n+1)=pw2x; 
  end 
end 
figure;hold on; 
plot(train(I1,1),train(I1,2),'b.'); 
plot(train(I2,1),train(I2,2),'r.'); 



hold off; 
[X,Y]=meshgrid(0:1:100,0:1:100); 
figure;surf(X,Y,Density1); 
figure;surf(X,Y,Density2); 
 

Experiment 3: 
In this step, I actually perform the classification in 2 and 3 dimensions, with feature 

vectors {1,8} and {1,8,15}. 

Again, the constant of proportionality for volume is 10000 for 2D, and 1000000 for 

3D. 

Since, there are regions in the sample space, where data is very sparse, it is not 

possible to compare the probabilities of both classes. For the test data points lying in 

those regions, I declare a doubt instead of performing the classification. 

 

The number of training samples is 1499. (Class 1: 720; Class 2: 719) 

The number of test samples is 699. (Class 1: 363; Class 2: 336) 

 

 Training Error Rate Test Error Rate Alpha 

2D 16/1499 (0.0107) Errors  

 

+ 3/1499 Doubts 

9/699 (0.0129) Errors  

 

+ 6/699 Doubts 

10000 

3D 29/1499 (0.0193) Errors  

 

+ 0/1499 Doubts 

4/699 (0.0057) Errors  

 

+ 7/699 Doubts 

1000000 

 

Code for PWM-Classification 
Dimension=2;alpha=10000; 
train=uint32(load('train.dat')); 
test=uint32(load('test.dat')); 
[N_train,temp]=size(train); 
[N_test,temp]=size(test); 
Classified=zeros(N_test,1); 
V=alpha/sqrt(N_train); 
h=V^(1/Dimension); 
err_count=0; 
doubt_count=0; 
for i=1:N_test 
    x=double(test(i,1:Dimension)); 
    n1=uint32(0);n2=uint32(0); 
    for j=1:N_train 
        y=double(train(j,1:Dimension)); 
        if max(abs(x-y))<h/2 
            if train(j,4)==0 
                n1=n1+1; 
            else n2=n2+1; 
            end 
        end 
    end 
    if n1+n2>0 
      pw1x=n1/(n1+n2); 
      pw2x=n2/(n1+n2); 
      if pw1x>pw2x 
        Classified(i)=1; 
        if test(i,4)==3 



            err_count=err_count+1; 
        end 
      else 
        Classified(i)=2; 
        if test(i,4)==0 
            err_count=err_count+1; 
        end 
      end 
    else 
        Classified(i)=0; %Doubt 
        doubt_count=doubt_count+1; 
    end 
end 
err_rate=err_count/N_test 
doubt_count 
doubt_rate=doubt_count/N_test 
 

 
 

2) K-Nearest Neighbor (KNN) 
 

Experiment 1: In KNN estimation and classification, we are required to increase the 

volume till it encompasses k points. Because the number of points in the volum is always 

non-zero, we do not encounter the same problem as we did in PWM. So, the constant of 

proportionality α  in k iα= in all cases is 1. The measure of nearness is based on 

Euclidean distance. The first experiment is to estimate density at the mean point in 1D 

Gaussian. 

 

The mean point is x=0. 

KNN estimated density = 0.4242 

Theoretical value of density = 0.3989 

 

Code for Density Estimation for Gaussian data 
Dimension=1; 
p_true=(1/(2*pi))^(Dimension/2); 
X=zeros(Dimension,1); 
normX=[0]; 
  
alpha=1; 
i=1; 
flag=1; 
while flag==1 
    x=random('norm',0,1,Dimension,1); 
    normx=norm(x,2); 
    if normx<normX(1) 
        index=0; 
        normX(index+1:i+1)=normX(index:i); 
        normX(index)=normx; 
        X(:,index+1:i+1)=X(:,index:i); 
        X(:,index)=x; 
    else if normx>=normX(i) 
            index=i; 
            normX(i+1)=normx; 
            X(:,i+1)=x; 
        else 



            index=find(normX>normx,1); 
            normX(index+1:i+1)=normX(index:i); 
            normX(index)=normx; 
            X(:,index+1:i+1)=X(:,index:i); 
            X(:,index)=x; 
        end 
    end 
    i=i+1; 
    k=uint32(alpha*sqrt(i))+1; 
    distance=normX(k); 
    if Dimension==2 
        V=pi*distance*distance; 
    else if Dimension==1 
            V=2*distance; 
        end 
    end 
     
    if mod(i,1000)==0 
         if Dimension==1, 
             [tempn,temploc]=hist(X,15); 
             figure;plot(temploc,tempn/i,'g'); 
         end 
         pix=double(k-1)/(double(i*V)); 
         p_true,pix 
         k,V 
         i 
         pause(); 
    end 
    close(); 
end 
 

 

 

Experiment 2: 
As next experiment, I use KNN method to estimate density of the samples of my dataset. 

The resulting plots are in following figures. 

 



 
 

 
 

Code for KNN-based Probability Estimation 
Dimension=2;alpha=1; 
train=load('train.dat'); 
[N_train,temp]=size(train); 
Density1=zeros(101,101); 
Density2=zeros(101,101); 



I1=find(train(:,4)==0); 
I2=find(train(:,4)==3); 
  
err_count=0; 
for i1=0:100 
  for i2=0:100 
     
    x=[i1,i2]; 
    k=uint32(alpha*sqrt(N_train))+1; 
    normX=[]; 
    X=[]; 
    for j=1:N_train 
        y=train(j,1:Dimension); 
        normx=norm(x-y,2); 
        if numel(normX)==0 
            normX=[normx]; 
            X=[train(j,4)]; 
            else if normx<normX(1) 
             normX(2:j)=normX(1:j-1); 
             normX(1)=normx; 
             X(2:j)=X(1:j-1); 
             X(1)=train(j,4); 
             else if normx>=normX(j-1) 
                normX(j)=normx; 
                X(j)=train(j,4); 
                 else 
                  index=find(normX>normx,1); 
                normX(index+1:j)=normX(index:j-1); 
                normX(index)=normx; 
                X(index+1:j)=X(index:j-1); 
                X(index)=train(j,4); 
                 end 
                end 
        end 
    end 
    distance=normX(k); 
    if Dimension==2 
        V=pi*distance*distance; 
    else if Dimension==1 
            V=2*distance; 
        end 
    end 
     
    n1=0;n2=0; 
    for j=1:k 
        if X(j)==0 
            n1=n1+1; 
        else n2=n2+1; 
        end 
    end 
    Density1(i1+1,i2+1)=n1/(numel(I1)*V); 
    Density2(i1+1,i2+1)=n2/(numel(I2)*V); 
  end 
end 
[X,Y]=meshgrid(0:1:100,0:1:100); 
figure;surf(X,Y,Density1); 
figure;surf(X,Y,Density2); 
 

 



 

Experiment 3: 
Here, I use KNN method to classify the test data from same datasets used in PWM. Here 

because I always able to find k neighbors, unlike PWM, I do not declare a doubt. Instead, 

I give the sample the class of majority of neighbors. 

 

 Training Error Rate Test Error Rate 

 

2D 

 

23/1499 (0.0153) 

 

 

18/699 (0.0258) 

 

3D 

 

23/1499 (0.0153) 

 

 

4/699 (0.0057) 

The error rate of KNN is comparable to PWM, for this dataset. But it is much 

simpler to code KNN, than PWM. 

 

 

Code for KNN Classification 
Dimension=3;alpha=1; 
load 'train.dat'; 
load 'test.dat'; 
[N_train,temp]=size(train); 
[N_test,temp]=size(test); 
Classified=zeros(N_test,1); 
  

  
err_count=0; 
for i=1:N_test 
    x=test(i,1:Dimension); 
    k=uint32(alpha*sqrt(N_train))+1; 
    normX=[]; 
    X=[]; 
    for j=1:N_train 
        y=train(j,1:Dimension); 
        normx=norm(x-y,2); 
        if numel(normX)==0 
            normX=[normx]; 
            X=[train(j,4)]; 
            else if normx<normX(1) 
             normX(2:j)=normX(1:j-1); 
             normX(1)=normx; 
             X(2:j)=X(1:j-1); 
             X(1)=train(j,4); 
             else if normx>=normX(j-1) 
                normX(j)=normx; 
                X(j)=train(j,4); 
                 else 
                  index=find(normX>normx,1); 
                normX(index+1:j)=normX(index:j-1); 
                normX(index)=normx; 
                X(index+1:j)=X(index:j-1); 
                X(index)=train(j,4); 
                 end 
             end 



    end 
    end  
     
    n1=0;n2=0; 
    for j=1:k 
        if X(j)==0 
            n1=n1+1; 
        else n2=n2+1; 
        end 
    end 
    pw1x=n1/(n1+n2); 
    pw2x=n2/(n1+n2); 
    if pw1x>pw2x 
        Classified(i)=1; 
        if test(i,4)==3 
            err_count=err_count+1; 
        end 
    else 
        Classified(i)=2; 
        if test(i,4)==0 
            err_count=err_count+1; 
        end 
    end 
end 
err_rate=err_count/N_test 
 

 
 

 

3) Nearest Neighbor (NN) 
The training error rate is “Don’t care” in this case. So, I have shown only test error rate. 

The dataset used is the same as in other sections of this problem. 

The measure of nearness is based on Euclidean distance. 

  

 Test Error Rate 

 

2D 

 

17/699 (0.0243) 

 

 

3D 

 

10/699 (0.0143) 

 

 

Code for Nearest Neighbor Classification 
Dimension=3; 
load 'train.dat'; 
load 'test.dat'; 
[N_train,temp]=size(train); 
[N_test,temp]=size(test); 
Classified=zeros(N_test,1); 
  
err_count=0; 
for i=1:N_test 
    x=test(i,1:Dimension); 
    y=train(1,1:Dimension); 
    mindist=norm(x-y,2); 



    closest=1; 
    for j=2:N_train 
        y=train(j,1:Dimension); 
        normx=norm(x-y,2);  %Euclidean distance 
        if normx<mindist 
            mindist=normx; 
            closest=j; 
        end 
    end  
    if train(closest,4)==0 
        Classified(i)=1; 
        if test(i,4)==3 
            err_count=err_count+1; 
        end 
    else 
        Classified(i)=2; 
        if test(i,4)==0 
            err_count=err_count+1; 
        end 
    end 
end 
err_rate=err_count/N_test 
 

 


