Solution 1:
As discussed in class, the cost function $J(w)$ was chosen for minimization to obtain the optimal classifier between two classes because it helps ensure that the difference between means is large relative to some measure of the standard deviations within the classes. The other cost function namely with $S_W=I_{nxn}$, considers only the means. Therefore, a classifier based on $J(w)$ will, in principle give lower error rate on the data on which it is trained.

For experimenting with this, I took a real data set from **UCI-Machine Learning Repository**. The data is about “Pen-based recognition of hand-written digits”. Although the original data set contains 10 classes, and 16 features, I chose two of the classes (class 0 and 3) and with 3 feature vectors (1, 8, 15) which appear to be linearly separable. In the following discussion, I refer the class labeled ‘0’ as class 1 and class labeled ‘3’ as class 2.

![Pen-based Recognition of hand-written digits](image)

Training Samples in 3 dimensions
As we see from the above figure, the data is reasonably linearly separable on the basis of chosen features, whether we take features 1 & 8 or 1, 8 & 15. Above shown data is the training data. Below I show test data for the same.
Summary Information of the number of samples

<table>
<thead>
<tr>
<th>Number of samples</th>
<th>Class 1</th>
<th>Class 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training samples</td>
<td>780</td>
<td>719</td>
<td>1499</td>
</tr>
<tr>
<td>Test samples</td>
<td>363</td>
<td>336</td>
<td>699</td>
</tr>
</tbody>
</table>

Result of Fisher Linear Discriminant (FLD) on 3 dimensions:

\[
m_1 = [33.8846, 6.4205, 19.1462] \\
m_2 = [25.0821, 60.6815, 3.1794] \\
m = [29.6624, 32.4470, 11.4877] \\
\sigma \\
\Sigma_1 = \begin{bmatrix} 512.5662 & -5.8669 & 186.8181 \\ -5.8669 & 138.6180 & -24.8320 \\ 186.8181 & -24.8320 & 373.6889 \end{bmatrix} \\
\Sigma_2 = \begin{bmatrix} 388.7457 & -45.3828 & -78.7727 \\ -45.3828 & 66.3422 & 18.5815 \\ -78.7727 & 18.5815 & 95.0568 \end{bmatrix} \\
\omega = 1.0e-003 \begin{bmatrix} -0.0116, & -0.3494, & 0.0414 \end{bmatrix} \\
\omega_0 = 0.0112 \\
Error rate on the training samples = 0.0200 \\
Error rate on the test samples = 0.0343
Result of Mean-Difference Discriminant (MDD) on 3 dimensions:

\[m_1 = [33.8846, 6.4205, 19.1462] \]
\[m_2 = [25.0821, 60.6815, 3.1794] \]
\[m = [29.6624, 32.4470, 11.4877] \]
\[
\Sigma_1 = \begin{bmatrix}
512.5662 & -5.8669 & 186.8181 \\
-5.8669 & 138.6180 & -24.8320 \\
186.8181 & -24.8320 & 373.6889 \\
\end{bmatrix}
\]

\[
\Sigma_2 = \begin{bmatrix}
388.7457 & -45.3828 & -78.7727 \\
-45.3828 & 66.3422 & 18.5815 \\
-78.7727 & 18.5815 & 95.0568 \\
\end{bmatrix}
\]

\[
\omega = \begin{bmatrix}
8.8026, & -54.2610, & 15.9667 \end{bmatrix}
\]

\[
\omega_0 = 1.3161 \times 10^3
\]

Training error rate for MDD = 0.0273
Test error rate for MDD = 0.0186

Training Data Classification
The bold-appearing line in between is the edge of separating hyper-plane. The line joining \(m_1 \) and \(m_2 \) passes perpendicular through this hyper-plane.

Here, we observe that

Training error for MDD > Training error for FLD, as expected from theory.

Test error for MDD < Test error for FLD!

This may happen when the test data behaves quite differently from the training data.

We can verify if this is the reason here by comparing the mean and variance of test data.

\[
m_1 = [38.5702, 9.1708, 28.4353]
\]

\[
m_2 = [24.1488, 60.3929, 4.0863]
\]

From the mean vectors for test data, it appears that, if anything, the test data are further apart in comparison with the training data. This means that FLD should have performed better than MDD, even on the test cases. But what we observe is the opposite. I don’t know of any precise reason of this, but one guess is that the samples which lie as exceptions outside the main distributions, cause this discrepancy. Since, our classifier is based on mean of distribution, and not on support vectors (like in SVM), it fails to resolve this.

But one thing that is important to observe is that FLD does perform better on the data on which it is trained. i.e. Training samples are always better classified by FLD, in comparison with FLD. The following experiment shows this

Now, let us determine FLD and MDD weight vectors for test samples themselves.

Applying FLD:

\[
\omega = 1.0e-003 * [0.0104, -0.6097, 0.2425]
\]
ω₀ = 0.0162
Training error rate (over the test samples) = 0.0243
Test error rate (over the training samples) = 0.0267

Applying MDD:
ω = [14.4214, -51.2221, 24.3490]
ω₀ = 867.2749
Training error rate (over the test samples) = 0.0257
Test error rate (over the training samples) = 0.0380

Again we see that on reversing the test and training data, FLD gives better accuracy over the data used for training.

If we see the figures above showing separation between classes by a plane, we see that there are blue points on the red side also, which could easily be taken on that side by choosing ω₀ properly. Again, the reason behind this deficiency in performance of this method, is that it depends on means and variances (assuming homogeneous distribution of data), and does not take individual samples into account, as a support vector machine does. My guess is that a SVM would do better at this choice.

Solution 2
For this problem, I take a different dataset from the same source as cited above.
 Classes: 5, 8
 Features: <varying number of features ranging from 1 to 16>
 First, I take feature {1}, then {1,2}, and add features in this way.

Neural Network Classification

For Neural Network Classification, I use Matlab’s toolbox interfaced with newff and train. It provides for the choice of number of hidden layers, and number of neurons in each layer.

<table>
<thead>
<tr>
<th>Matlab Program Options Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matlab interface functions</td>
</tr>
<tr>
<td>Transfer function for the hidden layers</td>
</tr>
<tr>
<td>Transfer function for the output layer</td>
</tr>
<tr>
<td>Back-propagation network training function</td>
</tr>
<tr>
<td>Back-propagation weight/bias learning function</td>
</tr>
</tbody>
</table>
The procedure used for training is back-propagation based on Levenberg-Marquardt optimization. It is an iterative technique locating a local minimum of a multivariate function that is expressed as the sum of squares of several non-linear, real-valued functions by updating weight and bias values in the network.

Experiment 1
First experiment, I performed was to test the effect of number of dimensions on accuracy of the classifier. As discussed previously, this depends on the dataset. In my case, the dataset was not so strongly correlated, (as we will see for three dimensions) therefore, with increase in the dimensionality of feature vectors, the accuracy grew. The network consisted of one hidden layer, with 20 neurons. Following graph shows the resulting error rates.

From the above graph, we see that for dimensions <= 3, the test error rate is less than training error rate. This is because of the fact that test data is more well-behaved (i.e. grouped together separate from the complementary class) in comparison with training data.
This is shown in 3D below.
Experiment 2:
The next experiment I performed by varying the number of layers in the neural network.

Figure showing test samples projected in 3 dimensions are more ‘classifiable’ than training samples
As we see in the result of previous experiment, error rate is quite high for Dimensions≤3. I tried in this experiment to increase the number of layers from 1 through 5, each layer containing 5 neurons, and try to classify samples projected in 3 dimensions. Following graph shows the result:

As discussed in the class, the error rate does not decrease with increasing the number of layers, because theoretically a one-hidden-layer network is as powerful as a multiple-hidden-layer network.

Experiment 3:
The third experiment is to compare error rates achieved by neural network on the original dataset of Problem 1, with Fisher Linear Discriminant.

<table>
<thead>
<tr>
<th></th>
<th>Training error rate</th>
<th>Test error rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neural Network classifier</td>
<td>0.0087</td>
<td>0.0286</td>
</tr>
<tr>
<td>Fisher Linear Discriminant</td>
<td>0.0200</td>
<td>0.0343</td>
</tr>
</tbody>
</table>

The above table shows that error rates are smaller for neural network. This is because of two reasons.

i) FLD is only a linear classifier and forms a hyperplane. Neural Network virtually forms a hypersurface.

ii) Neural Network performs well when the dataset is big. Here we have ~1500 samples, which gives the Neural network sufficient information about the
spread of data

SVM Classification

The tool used for SVM classification is SVM *light*, by Cornell University. It is a C program. Along with classification it also solves the problem of regression and ranking, but I use it here only to do the classification. It is quite fast, being in C, and because it does not output any pictorial representation of classifier.

Experiment 1
The first experiment I did with SVM is the same as first experiment of Neural network classification, i.e. vary the dimensions. The data set is the same as used in Neural Network problem.
Following graph shows the summarized results:

![Error Rate vs Dimensionality](image)

Both training and test error rates decrease with increase in dimensions. This is because of the dataset we have.
Number of support vectors identified for classification decrease slightly with increase in dimensionality.

Experiment 2:
The next experiment is to compare the error rates of SVM with Neural Network classifier. The following graph shows this.
Error rates achieved by Neural Network are lower than SVM because SVM finds a single discriminating hypersurface. The separating hypersurface determined by Neural Network is better than the separating hypersurface determined by SVM, because of having more freedom.

Experiment 3:
The next experiment is to compare the error rate achieved by SVM over the original dataset of problem 1, with error rates achieved by Neural Network and FLD.

<table>
<thead>
<tr>
<th></th>
<th>Training error rate</th>
<th>Test error rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Vector Machine</td>
<td>0.0153</td>
<td>0.0215</td>
</tr>
<tr>
<td>Neural Network classifier</td>
<td>0.0087</td>
<td>0.0286</td>
</tr>
<tr>
<td>Fisher Linear Discriminant</td>
<td>0.0200</td>
<td>0.0343</td>
</tr>
</tbody>
</table>

The table shows that over the original dataset of problem 1,

Neural Network > SVM > FLD

Solution 3:

1) **Parzen Window Method (PWM)**

Experiment 1: The first experiment is to design a parzen window method-based density estimation program. Since, in PWM, we have to choose volume according to the number of samples, $V = \alpha / \sqrt{i}$, I had to select an appropriate value for the constant of proportionality α. The measure of nearness is based on Euclidean
distance, because it seems OK for the dataset I have, and the shape of window is cubic.
I first apply this density estimation over 1D Gaussian. For this problem $\alpha=1$ was sufficient, because the data was synthetically generated from a known distribution, so we had a good number of samples everywhere.

Code

```matlab
x0=[0];
X=[];
Dimension=1;
p_true=1/sqrt(2*pi);
alpha=1;
i=0;
flag=1;
while flag==1
    x=random('norm',0,1,Dimension,1);
    X=[X,x];
i=i+1;
    V=alpha/sqrt(i);
    h=(V)^(1/Dimension);
    ki=0;
    for j=1:i
        tempflag=1;
        for k=1:Dimension
            if abs(X(k,j))> h/2
                tempflag=0;
            end
            if tempflag==1
                ki=ki+1;
            end
        end
    end
    if mod(i,10000)==0
        if Dimension==1,
            [tempn,temploc]=hist(X,15);
            figure;plot(temploc,tempn/i,'g');
        end
        pix=ki/(i*V)
        p_true
        ki,V
        i
        pause();
    end
end
close();
```

The result is as follows:
The density was estimated at mean point (x=0)
Value estimated by PWM = 0.4300
Theoretical value = 0.3989

Experiment 2:
The next experiment is to determine density over space containing my training and test data. The dataset is the same as in problem 1, which was also used for problem 2. The sample space is of 2 dimensions, representing feature space of feature vectors \{1,8\}. Because the dataset is real, and not well distributed, I had to take $\alpha=10000$ (equal to actual volume of entire space) to make sure that most of the time, there are at least some (>0) samples in the selected region.
I generate density estimates over all points in the space containing training data, as shown in following figures.
Data distribution in 2D (Feature vectors 1, 8)

Class 1
Class 2

PWM Estimated Density - Class 1
Code for PWM-based density estimation

```matlab
Dimension=2;alpha=10000;
train=uint32(load('train.dat'));
[N_train,temp]=size(train);
I1=find(train(:,4)==0);
I2=find(train(:,4)==3);
Density1=zeros(101,101);
Density2=zeros(101,101);
V=alpha/sqrt(N_train);
h=V^(1/Dimension);
for m=0:100
    for n=0:100
        x=double([m,n]);
        n1=0;n2=0;
        for j=1:N_train
            y=double(train(j,1:Dimension));
            if max(abs(x-y))<h/2
                if train(j,4)==0
                    n1=n1+1;
                else
                    n2=n2+1;
                end
            end
        end
        pw1x=n1/(numel(I1)*V);
pw2x=n2/(numel(I2)*V);
        Density1(m+1,n+1)=pw1x;
        Density2(m+1,n+1)=pw2x;
    end
end
figure;hold on;
plot(train(I1,1),train(I1,2),'b.');</code>
plot(train(I2,1),train(I2,2),'r.');```
hold off;
[X,Y]=meshgrid(0:1:100,0:1:100);
figure;surf(X,Y,Density1);
figure;surf(X,Y,Density2);

**Experiment 3:**
In this step, I actually perform the classification in 2 and 3 dimensions, with feature vectors {1,8} and {1,8,15}.
Again, the constant of proportionality for volume is 10000 for 2D, and 1000000 for 3D.
Since, there are regions in the sample space, where data is very sparse, it is not possible to compare the probabilities of both classes. For the test data points lying in those regions, I declare a doubt instead of performing the classification.

The number of training samples is 1499. (Class 1: 720; Class 2: 719)
The number of test samples is 699. (Class 1: 363; Class 2: 336)

<table>
<thead>
<tr>
<th></th>
<th>Training Error Rate</th>
<th>Test Error Rate</th>
<th>Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>2D</strong></td>
<td>16/1499 (0.0107) Errors + 3/1499 Doubts</td>
<td>9/699 (0.0129) Errors + 6/699 Doubts</td>
<td>10000</td>
</tr>
<tr>
<td><strong>3D</strong></td>
<td>29/1499 (0.0193) Errors + 0/1499 Doubts</td>
<td>4/699 (0.0057) Errors + 7/699 Doubts</td>
<td>1000000</td>
</tr>
</tbody>
</table>

**Code for PWM-Classification**
```
Dimension=2;alpha=10000;
train=uint32(load('train.dat'));
test=uint32(load('test.dat'));
[N_train,temp]=size(train);
[N_test,temp]=size(test);
Classified=zeros(N_test,1);
V=alpha/sqrt(N_train);
h=V^(1/Dimension);
err_count=0;
doubt_count=0;
for i=1:N_test
 x=double(test(i,1:Dimension));
 n1=uint32(0);n2=uint32(0);
 for j=1:N_train
 y=double(train(j,1:Dimension));
 if max(abs(x-y))<h/2
 if train(j,4)==0
 n1=n1+1;
 else
 n2=n2+1;
 end
 end
 end
 if n1+n2>0
 pw1x=n1/(n1+n2);
 pw2x=n2/(n1+n2);
 if pw1x>pw2x
 Classified(i)=1;
 end
 end
```
err_count=err_count+1;
else
    Classified(i)=2;
    if test(i,4)==0
        err_count=err_count+1;
    end
else
    Classified(i)=0; %Doubt
doubt_count=doubt_count+1;
end
end
err_rate=err_count/N_test
doubt_count
doubt_rate=doubt_count/N_test

2) K-Nearest Neighbor (KNN)

Experiment 1: In KNN estimation and classification, we are required to increase the volume till it encompasses $k$ points. Because the number of points in the volume is always non-zero, we do not encounter the same problem as we did in PWM. So, the constant of proportionality $\alpha$ in $k = \alpha \sqrt{i}$ in all cases is 1. The measure of nearness is based on Euclidean distance. The first experiment is to estimate density at the mean point in 1D Gaussian.

The mean point is $x=0$.
KNN estimated density = 0.4242
Theoretical value of density = 0.3989

Code for Density Estimation for Gaussian data
Dimension=1;
p_true=(1/(2*pi))^(Dimension/2);
X=zeros(Dimension,1);
normX=[0];
alpha=1;
i=1;
flag=1;
while flag==1
    x=random('norm',0,1,Dimension,1);
normx=norm(x,2);
    if normx<normX(1)
        index=0;
normX(index+1:i+1)=normX(index:i);
normX(index)=normx;
        X(:,index+1:i+1)=X(:,index:i);
        X(:,index)=x;
    else if normx>normX(i)
        index=i;
normX(i+1)=normx;
        X(:,i+1)=x;
    else
Experiment 2:
As next experiment, I use KNN method to estimate density of the samples of my dataset. The resulting plots are in following figures.
Code for KNN-based Probability Estimation

```
Dimension=2;alpha=1;
train=load('train.dat');
[N_train,temp]=size(train);
Density1=zeros(101,101);
Density2=zeros(101,101);
```
I1 = find(train(:,4) == 0);
I2 = find(train(:,4) == 3);

err_count = 0;
for i1 = 0:100
    for i2 = 0:100
        x = [i1, i2];
        k = uint32(alpha*sqrt(N_train)) + 1;
        normX = [];
        X = [];
        for j = 1:N_train
            y = train(j,1:Dimension);
            normx = norm(x-y,2);
            if numel(normX) == 0
                normX = [normx];
                X = [train(j,4)];
            elseif normx < normX(1)
                normX(2:j) = normX(1:j-1);
                normX(1) = normx;
                X(2:j) = X(1:j-1);
                X(1) = train(j,4);
            elseif normx >= normX(j-1)
                normX(j) = normx;
                X(j) = train(j,4);
            else
                index = find(normX>normx,1);
                normX(index+1:j) = normX(index:j-1);
                normX(index) = normx;
                X(index+1:j) = X(index:j-1);
                X(index) = train(j,4);
            end
        end
        distance = normX(k);
        if Dimension == 2
            V = pi*distance*distance;
        elseif Dimension == 1
            V = 2*distance;
        end
    end
    n1 = 0; n2 = 0;
    for j = 1:k
        if X(j) == 0
            n1 = n1 + 1;
        else
            n2 = n2 + 1;
        end
    end
    Density1(i1+1,i2+1) = n1/(numel(I1)*V);
    Density2(i1+1,i2+1) = n2/(numel(I2)*V);
end
end
[X,Y] = meshgrid(0:1:100,0:1:100);
figure;surf(X,Y,Density1);
figure;surf(X,Y,Density2);
Experiment 3:
Here, I use KNN method to classify the test data from same datasets used in PWM. Here because I always able to find k neighbors, unlike PWM, I do not declare a doubt. Instead, I give the sample the class of majority of neighbors.

<table>
<thead>
<tr>
<th></th>
<th>Training Error Rate</th>
<th>Test Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>23/1499 (0.0153)</td>
<td>18/699 (0.0258)</td>
</tr>
<tr>
<td>3D</td>
<td>23/1499 (0.0153)</td>
<td>4/699 (0.0057)</td>
</tr>
</tbody>
</table>

The error rate of KNN is comparable to PWM, for this dataset. But it is much simpler to code KNN, than PWM.

Code for KNN Classification

```matlab
Dimension=3;alpha=1;
load 'train.dat';
load 'test.dat';
[N_train,temp]=size(train);
[N_test,temp]=size(test);
Classified=zeros(N_test,1);

err_count=0;
for i=1:N_test
 x=test(i,1:Dimension);
 k=uint32(alpha*sqrt(N_train))+1;
 normX=[];
 X=[];
 for j=1:N_train
 y=train(j,1:Dimension);
 normx=norm(x-y,2);
 if numel(normX)==0
 normX=[normx];
 X=[train(j,4)];
 elseif normx<normX(1)
 normX(2:j)=normX(1:j-1);
 normX(1)=normx;
 X(2:j)=X(1:j-1);
 X(1)=train(j,4);
 elseif normx>=normX(j-1)
 normX(j)=normx;
 X(j)=train(j,4);
 else
 index=find(normX>normx,1);
 normX(index+1:j)=normX(index:j-1);
 normX(index)=normx;
 X(index+1:j)=X(index:j-1);
 X(index)=train(j,4);
 end
 end
```
3) **Nearest Neighbor (NN)**
The training error rate is “Don’t care” in this case. So, I have shown only test error rate. The dataset used is the same as in other sections of this problem. The measure of nearness is based on Euclidean distance.

<table>
<thead>
<tr>
<th></th>
<th>Test Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>2D</strong></td>
<td>17/699 (0.0243)</td>
</tr>
<tr>
<td><strong>3D</strong></td>
<td>10/699 (0.0143)</td>
</tr>
</tbody>
</table>

**Code for Nearest Neighbor Classification**

```matlab
dimension=3;
load 'train.dat';
load 'test.dat';
[N_train,temp]=size(train);
[N_test,temp]=size(test);
Classified=zeros(N_test,1);

err_count=0;
for i=1:N_test
 x=test(i,1:Dimension);
 y=train(1,1:Dimension);
 mindist=norm(x-y,2);
```
closest=1;
for j=2:N_train
    y=train(j,1:Dimension);
    normx=norm(x-y,2) ;  %Euclidean distance
    if normx<mindist
        mindist=normx;
        closest=j;
    end
end
if train(closest,4)==0
    Classified(i)=1;
    if test(i,4)==3
        err_count=err_count+1;
    end
else
    Classified(i)=2;
    if test(i,4)==0
        err_count=err_count+1;
    end
end
err_rate=err_count/N_test