
Solution 1:
As discussed in class, the cost function J(w) was chosen for minimization to obtain the

optimal classifier between two classes because it helps ensure that the difference between

means is large relative to some measure of the standard deviations within the classes. The

other cost function namely with SW=Inxn, considers only the means. Therefore, a classifier

based on J(w) will, in principle give lower error rate on the data on which it is trained.

For experimenting with this, I took a real data set from UCI-Machine Learning

Repository. The data is about “Pen-based recognition of hand-written digits”. Although

the original data set contains 10 classes, and 16 features, I chose two of the classes (class

0 and 3) and with 3 feature vectors (1, 8, 15) which appear to be linearly separable. In the

following discussion, I refer the class labeled ‘0’ as class 1 and class labeled ‘3’ as class

2.

Training Samples in 3 dimensions

As we see from the above figure, the data is reasonably linearly separable on the basis of

chosen features, whether we take features1 & 8 or 1, 8 &15.

Above shown data is the training data.

Below I show test data for the same.

Training Samples in 2 dimensions

Test Samples in 3 dimensions

Summary Information of the number of samples

Number of samples Class 1 Class 2 Total

Training samples 780 719 1499

Test samples 363 336 699

Result of Fisher Linear Discriminant (FLD) on 3 dimensions:
m1 = [33.8846, 6.4205, 19.1462]

m2 = [25.0821, 60.6815, 3.1794]

m = [29.6624, 32.4470, 11.4877]

σ

Σ1 = [512.5662 -5.8669 186.8181

 -5.8669 138.6180 -24.8320

186.8181 -24.8320 373.6889]

Σ2 = [388.7457 -45.3828 -78.7727

 -45.3828 66.3422 18.5815

 -78.7727 18.5815 95.0568]

ω = 1.0e-003 * [-0.0116, -0.3494, 0.0414]

ω0 = 0.0112

Error rate on the training samples = 0.0200

Error rate on the test samples = 0.0343

Test Samples in 2 dimensions

Result of Mean-Difference Discriminant (MDD) on 3 dimensions:

m1 =[33.8846, 6.4205, 19.1462]

m2 = [25.0821, 60.6815, 3.1794]

m = [29.6624, 32.4470, 11.4877]

Σ1 = [512.5662 -5.8669 186.8181

-5.8669 138.6180 -24.8320

 186.8181 -24.8320 373.6889]

Σ2 = [388.7457 -45.3828 -78.7727

 -45.3828 66.3422 18.5815

 -78.7727 18.5815 95.0568]

ω = [8.8026, -54.2610, 15.9667]

ω0 = 1.3161e+003

Training error rate for MDD = 0.0273

Test error rate for MDD = 0.0186

Training Data Classification

The bold-appearing line in between is the edge of separating hyper-plane. The line joining

m1 and m2 passes perpendicular through this hyper-plane.

Here, we observe that

Training error for MDD > Training error for FLD, as expected from theory.

Test error for MDD < Test error for FLD!
This may happen when the test data behaves quite differently from the training data.

We can verify if this is the reason here by comparing the mean and variance of test data.

m1 = [38.5702, 9.1708, 28.4353]

m2 = [24.1488, 60.3929, 4.0863]

From the mean vectors for test data, it appears that, if anything, the test data are further

apart in comparison with the training data. This means that FLD should have performed

better than MDD, even on the test cases. But what we observe is the opposite. I don’t

know of any precise reason of this, but one guess is that the samples which lie as

exceptions outside the main distributions, cause this discrepancy. Since, our classifier is

based on mean of distribution, and not on support vectors (like in SVM), it fails to

resolve this.

But one thing that is important to observe is that FLD does perform better on the data on

which it is trained. i.e. Training samples are always better classified by FLD, in

comparison with FLD. The following experiment shows this

Now, let us determine FLD and MDD weight vectors for test samples themselves.

Applying FLD:
ω = 1.0e-003 * [0.0104, -0.6097, 0.2425]

Test Data Classification

ω0 = 0.0162

Training error rate (over the test samples) = 0.0243

Test error rate (over the training samples) = 0.0267

Applying MDD:
ω = [14.4214, -51.2221, 24.3490]

ω0 = 867.2749

Training error rate (over the test samples) = 0.0257

Test error rate (over the training samples) = 0.0380

Again we see that on reversing the test and training data, FLD gives better accuracy over

the data used for training.

If we see the figures above showing separation between classes by a plane, we see that

there are blue points on the red side also, which could easily be taken on that side by

choosing ω0 properly. Again, the reason behind this deficiency in performance of this

method, is that it depends on means and variances (assuming homogeneous distribution

of data), and does not take individual samples into account, as a support vector machine

does. My guess is that a SVM would do better at this choice.

Solution 2
For this problem, I take a different dataset from the same source as cited above.

Classes: 5, 8

Features: <varying number of features ranging from 1 to 16>

 First, I take feature {1}, then {1,2}, and add features in this way.

Neural Network Classification

For Neural Network Classification, I use Matlab’s toolbox interfaced with newff and

train. It provides for the choice of number of hidden layers, and number of neurons in

each layer.

Matlab Program Options Used

Matlab interface functions newff, train

Transfer function for the hidden layers tansig

Transfer function for the output layer Purelin

Back-propagation network training

function

Trainlm

Back-propagation weight/bias learning

function

Learngdm

The procedure used for training is back-propagation based on Levenberg-Marquardt

optimization. It is an iterative technique locating a local minimum of a multivariate

function that is expressed as the sum of squares of several non-linear, real-valued

functions by updating weight and bias values in the network.

Experiment 1
First experiment, I performed was to test the effect of number of dimensions on accuracy

of the classifier. As discussed previously, this depends on the dataset. In my case, the

dataset was not so strongly correlated, (as we will see for three dimensions) therefore,

with increase in the dimensionality of feature vectors, the accuracy grew.

The network consisted of one hidden layer, with 20 neurons.

Following graph shows the resulting error rates.

From the above graph, we see that for dimensions <= 3, the test error rate is less than

training error rate. This is because of the fact that test data is more well-behaved (i.e.

grouped together separate from the complementary class) in comparison with training

data.

This is shown in 3D below.

1 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of dimensions

Error rate

Error Rate vs Dimensionality

Training error rate

Test error rate

Experiment 2:
The next experiment I performed by varying the number of layers in the neural network.

Figure showing test samples projected in 3 dimensions

are more ‘classifiable’ than training samples

Figure showing training samples projected in 3

dimensions are not ‘well-classifiable’

As we see in the result of previous experiment, error rate is quite high for

Dimensions<=3, I tried in this experiment to increase the number of layers from 1

through 5, each layer containing 5 neurons, and try to classify samples projected in 3

dimensions.

Following graph shows the result:

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of hidden layers

E
rr

o
r

ra
te

Error rate vs Number of hidden layers

Training error rate

Test error rate

As discussed in the class, the error rate does not decrease with increasing the number

of layers, because theoretically a one-hidden-layer network is as powerful as a multiple-

hidden-layer network.

Experiment 3:
The third experiment is to compare error rates achieved by neural network on the original

dataset of Problem 1, with Fisher Linear Discriminant.

 Training error rate Test error rate

Neural Network classifier 0.0087 0.0286

Fisher Linear Discriminant 0.0200 0.0343

The above table shows that error rates are smaller for neural network. This is because of

two reasons.

i) FLD is only a linear classifier and forms a hyperplane. Neural Network

virtually forms a hypersurface.

ii) Neural Network performs well when the dataset is big. Here we have ~1500

samples, which gives the Neural network sufficient information about the

spread of data

SVM Classification

The tool used for SVM classification is SVM light, by Cornell University. It is a C

program. Along with classification it also solves the problem of regression and ranking,

but I use it here only to do the classification. It is quite fast, being in C, and because it

does not output any pictorial representation of classifier.

Experiment 1
The first experiment I did with SVM is the same as first experiment of Neural network

classification, i.e. vary the dimensions. The data set is the same as used in Neural

Network problem.

Following graph shows the summarized results:

Error Rate vs Dimensionality

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of dimensions

E
rr

o
r

R
a
te

Training accuracy Test accuracy

Both training and test error rates decrease with increase in dimensions. This is

because of the dataset we have.

Number of Support Vectors vs Dimensionality

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of dimensions

N
u

m
b

e
r

o
f

S
u

p
p

o
rt

 V
e
c
to

rs

Number of support vectors identified for classification decrease slightly with

increase in dimensionality.

Experiment 2:
The next experiment is to compare the error rates of SVM with Neural Network

classifier. The following graph shows this.

SVM Classification vs Neural Network Classification

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Dimensionality

E
rr

o
r

R
a
te

SVM_ErrorRate NeuralNet_ErrorRate

Error rates achieved by Neural Network are lower than SVM because SVM finds a single

discriminating hypersurface. The separating hypersurface determined by Neural Network

is better than the separating hypersurface determined by SVM, because of having more

freedom.

Experiment 3:
The next experiment is to compare the error rate achieved by SVM over the original

dataset of problem 1, with error rates achieved by Neural Network and FLD.

 Training error rate Test error rate

Support Vector Machine 0.0153 0.0215

Neural Network classifier 0.0087 0.0286

Fisher Linear Discriminant 0.0200 0.0343

The table shows that over the original dataset of problem 1,

Neural Network > SVM > FLD

Solution 3:
1) Parzen Window Method (PWM)

Experiment 1: The first experiment is to design a parzen window method-based

density estimation program. Since, in PWM, we have to choose volume according to

the number of samples, /V iα= , I had to select an appropriate value for the

constant of proportionality α . The measure of nearness is based on Euclidean

distance, because it seems OK for the dataset I have, and the shape of window is

cubic.

I first apply this density estimation over 1D Gaussian. For this problem α =1 was

sufficient, because the data was synthetically generated from a known distribution, so

we had a good number of samples everywhere.

Code
x0=[0];
X=[];
Dimension=1;
p_true=1/sqrt(2*pi);
alpha=1;
i=0;
flag=1;
while flag==1
 x=random('norm',0,1,Dimension,1);
 X=[X,x];
 i=i+1;
 V=alpha/sqrt(i);
 h=(V)^(1/Dimension);
 ki=0;
 for j=1:i
 tempflag=1;
 for k=1:Dimension
 if abs(X(k,j))> h/2
 tempflag=0;
 end
 if tempflag==1
 ki=ki+1;
 end
 end
 end
 if mod(i,10000)==0
 if Dimension==1,
 [tempn,temploc]=hist(X,15);
 figure;plot(temploc,tempn/i,'g');
 end
 pix=ki/(i*V)
 p_true
 ki,V
 i
 pause();
 end
 close();
end

The result is as follows:

The density was estimated at mean point (x=0)

Value estimated by PWM = 0.4300

Theoretical value = 0.3989

Experiment 2:
The next experiment is to determine density over space containing my training and

test data. The dataset is the same as in problem 1, which was also used for problem 2.

The sample space is of 2 dimensions, representing feature space of feature vectors

{1,8}. Because the dataset is real, and not well distributed, I had to take α =10000

(equal to actual volume of entire space) to make sure that most of the time, there are

atleast some (>0) samples in the selected region.

I generate density estimates over all points in the space containing training data, as

shown in following figures.

Code for PWM-based density estimation
Dimension=2;alpha=10000;
train=uint32(load('train.dat'));
[N_train,temp]=size(train);
I1=find(train(:,4)==0);
I2=find(train(:,4)==3);
Density1=zeros(101,101);
Density2=zeros(101,101);
V=alpha/sqrt(N_train);
h=V^(1/Dimension);
for m=0:100
 for n=0:100
 x=double([m,n]);
 n1=0;n2=0;
 for j=1:N_train
 y=double(train(j,1:Dimension));
 if max(abs(x-y))<h/2
 if train(j,4)==0
 n1=n1+1;
 else n2=n2+1;
 end
 end
 end
 pw1x=n1/(numel(I1)*V);
 pw2x=n2/(numel(I2)*V);
 Density1(m+1,n+1)=pw1x;
 Density2(m+1,n+1)=pw2x;
 end
end
figure;hold on;
plot(train(I1,1),train(I1,2),'b.');
plot(train(I2,1),train(I2,2),'r.');

hold off;
[X,Y]=meshgrid(0:1:100,0:1:100);
figure;surf(X,Y,Density1);
figure;surf(X,Y,Density2);

Experiment 3:
In this step, I actually perform the classification in 2 and 3 dimensions, with feature

vectors {1,8} and {1,8,15}.

Again, the constant of proportionality for volume is 10000 for 2D, and 1000000 for

3D.

Since, there are regions in the sample space, where data is very sparse, it is not

possible to compare the probabilities of both classes. For the test data points lying in

those regions, I declare a doubt instead of performing the classification.

The number of training samples is 1499. (Class 1: 720; Class 2: 719)

The number of test samples is 699. (Class 1: 363; Class 2: 336)

 Training Error Rate Test Error Rate Alpha

2D 16/1499 (0.0107) Errors

+ 3/1499 Doubts

9/699 (0.0129) Errors

+ 6/699 Doubts

10000

3D 29/1499 (0.0193) Errors

+ 0/1499 Doubts

4/699 (0.0057) Errors

+ 7/699 Doubts

1000000

Code for PWM-Classification
Dimension=2;alpha=10000;
train=uint32(load('train.dat'));
test=uint32(load('test.dat'));
[N_train,temp]=size(train);
[N_test,temp]=size(test);
Classified=zeros(N_test,1);
V=alpha/sqrt(N_train);
h=V^(1/Dimension);
err_count=0;
doubt_count=0;
for i=1:N_test
 x=double(test(i,1:Dimension));
 n1=uint32(0);n2=uint32(0);
 for j=1:N_train
 y=double(train(j,1:Dimension));
 if max(abs(x-y))<h/2
 if train(j,4)==0
 n1=n1+1;
 else n2=n2+1;
 end
 end
 end
 if n1+n2>0
 pw1x=n1/(n1+n2);
 pw2x=n2/(n1+n2);
 if pw1x>pw2x
 Classified(i)=1;
 if test(i,4)==3

 err_count=err_count+1;
 end
 else
 Classified(i)=2;
 if test(i,4)==0
 err_count=err_count+1;
 end
 end
 else
 Classified(i)=0; %Doubt
 doubt_count=doubt_count+1;
 end
end
err_rate=err_count/N_test
doubt_count
doubt_rate=doubt_count/N_test

2) K-Nearest Neighbor (KNN)

Experiment 1: In KNN estimation and classification, we are required to increase the

volume till it encompasses k points. Because the number of points in the volum is always

non-zero, we do not encounter the same problem as we did in PWM. So, the constant of

proportionality α in k iα= in all cases is 1. The measure of nearness is based on

Euclidean distance. The first experiment is to estimate density at the mean point in 1D

Gaussian.

The mean point is x=0.

KNN estimated density = 0.4242

Theoretical value of density = 0.3989

Code for Density Estimation for Gaussian data
Dimension=1;
p_true=(1/(2*pi))^(Dimension/2);
X=zeros(Dimension,1);
normX=[0];

alpha=1;
i=1;
flag=1;
while flag==1
 x=random('norm',0,1,Dimension,1);
 normx=norm(x,2);
 if normx<normX(1)
 index=0;
 normX(index+1:i+1)=normX(index:i);
 normX(index)=normx;
 X(:,index+1:i+1)=X(:,index:i);
 X(:,index)=x;
 else if normx>=normX(i)
 index=i;
 normX(i+1)=normx;
 X(:,i+1)=x;
 else

 index=find(normX>normx,1);
 normX(index+1:i+1)=normX(index:i);
 normX(index)=normx;
 X(:,index+1:i+1)=X(:,index:i);
 X(:,index)=x;
 end
 end
 i=i+1;
 k=uint32(alpha*sqrt(i))+1;
 distance=normX(k);
 if Dimension==2
 V=pi*distance*distance;
 else if Dimension==1
 V=2*distance;
 end
 end

 if mod(i,1000)==0
 if Dimension==1,
 [tempn,temploc]=hist(X,15);
 figure;plot(temploc,tempn/i,'g');
 end
 pix=double(k-1)/(double(i*V));
 p_true,pix
 k,V
 i
 pause();
 end
 close();
end

Experiment 2:
As next experiment, I use KNN method to estimate density of the samples of my dataset.

The resulting plots are in following figures.

Code for KNN-based Probability Estimation
Dimension=2;alpha=1;
train=load('train.dat');
[N_train,temp]=size(train);
Density1=zeros(101,101);
Density2=zeros(101,101);

I1=find(train(:,4)==0);
I2=find(train(:,4)==3);

err_count=0;
for i1=0:100
 for i2=0:100

 x=[i1,i2];
 k=uint32(alpha*sqrt(N_train))+1;
 normX=[];
 X=[];
 for j=1:N_train
 y=train(j,1:Dimension);
 normx=norm(x-y,2);
 if numel(normX)==0
 normX=[normx];
 X=[train(j,4)];
 else if normx<normX(1)
 normX(2:j)=normX(1:j-1);
 normX(1)=normx;
 X(2:j)=X(1:j-1);
 X(1)=train(j,4);
 else if normx>=normX(j-1)
 normX(j)=normx;
 X(j)=train(j,4);
 else
 index=find(normX>normx,1);
 normX(index+1:j)=normX(index:j-1);
 normX(index)=normx;
 X(index+1:j)=X(index:j-1);
 X(index)=train(j,4);
 end
 end
 end
 end
 distance=normX(k);
 if Dimension==2
 V=pi*distance*distance;
 else if Dimension==1
 V=2*distance;
 end
 end

 n1=0;n2=0;
 for j=1:k
 if X(j)==0
 n1=n1+1;
 else n2=n2+1;
 end
 end
 Density1(i1+1,i2+1)=n1/(numel(I1)*V);
 Density2(i1+1,i2+1)=n2/(numel(I2)*V);
 end
end
[X,Y]=meshgrid(0:1:100,0:1:100);
figure;surf(X,Y,Density1);
figure;surf(X,Y,Density2);

Experiment 3:
Here, I use KNN method to classify the test data from same datasets used in PWM. Here

because I always able to find k neighbors, unlike PWM, I do not declare a doubt. Instead,

I give the sample the class of majority of neighbors.

 Training Error Rate Test Error Rate

2D

23/1499 (0.0153)

18/699 (0.0258)

3D

23/1499 (0.0153)

4/699 (0.0057)

The error rate of KNN is comparable to PWM, for this dataset. But it is much

simpler to code KNN, than PWM.

Code for KNN Classification
Dimension=3;alpha=1;
load 'train.dat';
load 'test.dat';
[N_train,temp]=size(train);
[N_test,temp]=size(test);
Classified=zeros(N_test,1);

err_count=0;
for i=1:N_test
 x=test(i,1:Dimension);
 k=uint32(alpha*sqrt(N_train))+1;
 normX=[];
 X=[];
 for j=1:N_train
 y=train(j,1:Dimension);
 normx=norm(x-y,2);
 if numel(normX)==0
 normX=[normx];
 X=[train(j,4)];
 else if normx<normX(1)
 normX(2:j)=normX(1:j-1);
 normX(1)=normx;
 X(2:j)=X(1:j-1);
 X(1)=train(j,4);
 else if normx>=normX(j-1)
 normX(j)=normx;
 X(j)=train(j,4);
 else
 index=find(normX>normx,1);
 normX(index+1:j)=normX(index:j-1);
 normX(index)=normx;
 X(index+1:j)=X(index:j-1);
 X(index)=train(j,4);
 end
 end

 end
 end

 n1=0;n2=0;
 for j=1:k
 if X(j)==0
 n1=n1+1;
 else n2=n2+1;
 end
 end
 pw1x=n1/(n1+n2);
 pw2x=n2/(n1+n2);
 if pw1x>pw2x
 Classified(i)=1;
 if test(i,4)==3
 err_count=err_count+1;
 end
 else
 Classified(i)=2;
 if test(i,4)==0
 err_count=err_count+1;
 end
 end
end
err_rate=err_count/N_test

3) Nearest Neighbor (NN)
The training error rate is “Don’t care” in this case. So, I have shown only test error rate.

The dataset used is the same as in other sections of this problem.

The measure of nearness is based on Euclidean distance.

 Test Error Rate

2D

17/699 (0.0243)

3D

10/699 (0.0143)

Code for Nearest Neighbor Classification
Dimension=3;
load 'train.dat';
load 'test.dat';
[N_train,temp]=size(train);
[N_test,temp]=size(test);
Classified=zeros(N_test,1);

err_count=0;
for i=1:N_test
 x=test(i,1:Dimension);
 y=train(1,1:Dimension);
 mindist=norm(x-y,2);

 closest=1;
 for j=2:N_train
 y=train(j,1:Dimension);
 normx=norm(x-y,2); %Euclidean distance
 if normx<mindist
 mindist=normx;
 closest=j;
 end
 end
 if train(closest,4)==0
 Classified(i)=1;
 if test(i,4)==3
 err_count=err_count+1;
 end
 else
 Classified(i)=2;
 if test(i,4)==0
 err_count=err_count+1;
 end
 end
end
err_rate=err_count/N_test

