Problem Set \#5: Field Theory I

1. Let F be a field of characteristic $p>0$, and fix $c \in F$. Show that the polynomial

$$
f(x)=x^{p}-c
$$

is either irreducible over F or has a root in F.
2. Suppose q is prime and consider

$$
f_{q}(x)=x^{q-1}+x^{q-2}+\cdots+1
$$

(a) Suppose a prime number p divides $f_{q}(a)$ for some integer a. Prove that $p=q$ or $p \equiv 1(\bmod q)$.
(b) Prove there are infinitely many primes of the form $q b+1$, where b is an integer.
3. Suppose that F is a field and I is a nontrivial ideal in $F[x]$. If $p(x)$ is irreducible and $p(x) \in I$, show that $I=(p(x))$.
4. Find the degree of the extension $\mathbb{Q}(\alpha)$ over \mathbb{Q}, where

$$
\alpha=\sqrt{\frac{1+\sqrt{5}}{2}}
$$

5. Find the degree of the extension $\mathbb{Q}(\alpha)$ over \mathbb{Q}, where

$$
\alpha=2^{1 / 3}+2^{5 / 3}
$$

6. Prove rigorously, but as concisely as possible, that if E is an extension of F and $[E: F]=p$, then $F(a)=F$ or $F(a)=E$ for all $a \in E$.
7. Suppose that $[F(\alpha): F]=p$ and $[F(\beta): F]=q$, where p and q are primes. Determine (with proof) all possibilities for $[F(\alpha, \beta): F]$.
