07.01.13

Problem Set #5: Field Theory I

1. Let F be a field of characteristic p > 0, and fix $c \in F$. Show that the polynomial

 $f(x) = x^p - c$

is either irreducible over F or has a root in F.

2. Suppose q is prime and consider

$$f_q(x) = x^{q-1} + x^{q-2} + \dots + 1.$$

- (a) Suppose a prime number p divides $f_q(a)$ for some integer a. Prove that p = q or $p \equiv 1 \pmod{q}$.
- (b) Prove there are infinitely many primes of the form qb + 1, where b is an integer.
- 3. Suppose that F is a field and I is a nontrivial ideal in F[x]. If p(x) is irreducible and $p(x) \in I$, show that I = (p(x)).
- 4. Find the degree of the extension $\mathbb{Q}(\alpha)$ over \mathbb{Q} , where

$$\alpha = \sqrt{\frac{1+\sqrt{5}}{2}}.$$

5. Find the degree of the extension $\mathbb{Q}(\alpha)$ over \mathbb{Q} , where

$$\alpha = 2^{1/3} + 2^{5/3}.$$

- 6. Prove rigorously, but as concisely as possible, that if E is an extension of F and [E:F] = p, then F(a) = F or F(a) = E for all $a \in E$.
- 7. Suppose that $[F(\alpha):F] = p$ and $[F(\beta):F] = q$, where p and q are primes. Determine (with proof) all possibilities for $[F(\alpha, \beta):F]$.