Experiment Y: M-ary PSK Modulation and Demodulation (1 week)

I. OBJECTIVES

Upon completion of the M-ary PSK experiment, you should be able to:

1. Construct and test the M-ary PSK system described in Figures 1 and 2.
a. Use proper cut-off frequencies for reconstruction filters.
b. Adjust system to obtain signal voltages with the appropriate amplitude and phase.
2. Using an 8.3 kHz bit-rate and a $\left(2048=2^{11}\right)$ PN Sequence as an input signal, obtain time domain displays for: $\mathrm{QPSK}=4-\mathrm{PSK}, 8-\mathrm{PSK}$, and 16-PSK constellations. Constellations may be displayed on the scope by "i vs. q" from M-Level Encoder.
3. Using an 8.3 kHz bit-rate, a 2048 PN Sequence, and a 100 kHz Carrier, obtain time and frequency domain (PSD) displays for:
a. The QPSK (= 4-PSK) Channel.
b. The output of a demodulating multiplier and its reconstruction filter.
4. Using an 8.3 kHz bit-rate, a 2048 PN Sequence, and a 100 kHz Carrier, compare at least 16 bits of the output PN Sequence with the input. Be observant.
$* * * * * * * * * * * * * * * * \quad$ Optional Experiments.

A. Design experiment(s) to investigate effects of whatever interests you. Keep it focused. ${ }^{1}$
a. Include: A clear objective -- sometimes, you just want to try something;

An understandable procedure - include sketch of set-up;
Results - attach print-outs if appropriate;
Conclusions - be concise and accurate,
b. Specify the system gains and selector switch positions. (Get TA help if needed.)
c. Use proper cut-off frequencies for anti-aliasing and reconstruction filters.
d. Clearly specify measurements, including where measured in the system.
B. Instead of the 2048 PN Sequence, insert a digitized audio input. Use an 8.3 kHz bit rate for the PCM Encoder and Decoder. Don't forget input and output filters. Organize your experiment to obtain some interesting results.

II. PRELAB

1. Read your text: 8.1.1 thru 8.1.11
2. Visit a website showing figures similar to those on pages Y-4 and Y-5. Copy and attach the similar material from the website. (Cite the URL.)
3. Skim this lab and try to think of an experiment you might want to do.
[^0]
III.. INTRODUCTION.

Figures 1 and 2 show the block diagram and connection diagram of the QPSK system to be investigated for this experiment. The system can be used to generate several constellations for M-ary Phase-Shift Key systems as well as generate and demodulate 4-PSK (Quadrature PSK = QPSK) signals. The carrier frequency shown is 100 kHz and the bit-rate is 8.3 kHz .

On the pages following Figure 2, Table 1 and Figures 1, 3 and 7 are from:
http://www.wj.com/documents/Tech_Notes_Archived/PSK_demod_part1.pdf
This site is no longer available. These figures give a very quick overview of M-ary PSK.
NOTE: In Figures 1 and 2, below, phased carriers and bit-clock are supplied to the demodulator from the generator.

Fig.1. Block Diagram for QPSK System.

Table 1. Three common versions of phase-shift keying (BPSK, QPSK and $8 \phi-\mathrm{PSK}$).

Figure 1. BPSK and QPSK spectra.

Figure 3. QPSK modulator.
NOTE:
The circuit of Figure 7 demodulates without a carrier from the modulating circuit.
The next trick would be to "steal" the bit clock from the data signal.

Figure 7. Modified (hard-limited) QPSK Costas loop.

IV. EXPERIMENT.

Perform experiments required to meet the stated objectives.
Record your procedures and results.

[^0]: ${ }^{1}$ For example, a long PN sequence is used as an input test signal. Does the length of the input PN sequence really matter? You must have many other questions - focus on one and answer it.

