
 APRIL 1, 2008
 ECE 662 HOMEWORK 2

The Fisher’s discriminant provides information about the separation between
the means of two classes as well as the within-class spreads of the data
points. Let’s recall that the numerator of the cost function)(wJ is the squared

distance of the projected means onto the vector w. Furthermore, such
numerator can be written as seen in equation 1.

wSwwmmmmwmm B

TTT

pp =−−=− .))(.()(1212

2

12 Equation 1

The projected means for class 2 and 1 are represented by 12 , pp mm ,

respectively, 12 , mm are the original means of the data, w is the vector on

which the data is projected and the matrix BS is called the between-class

covariance matrix.

On the other hand, the denominator of Fisher’s discriminant is the sum of the
within-class scatters of the projected data. Equation 2 shows the relationship

between the within-class scatters 21 ,CC of the original data, and the projected

ones 21 , pp CC through the projection vector w. The matrix wS is called the

total within-class covariance matrix.

wSwwCCwCC w

TT

pp =+=+)..(2121 Equation 2

Notice that if we were going to use only the denominator to find the w that
maximizes the cost function)(wJ , we would be finding the best w that gives

us the greatest separation between means. Although this approach is alluring,
it is a naïve one, since it doesn’t provide any information about the spread of
the data.

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Figure 1. Class 1 is represented by the red dots and class 2 is denoted by the green dots.
The black stars are the means of each class. The lines are the projections of the means onto
the x-axis. The distance between the projected means is 14.09

In Figure 1 we can see how finding the greatest distance of the projected
means doesn’t yield the best separation between classes necessarily.

According to the numerator of)(wJ , the vector ow that maximizes such

expression for our data is the x-axis. If we project all the data on such vector,
we will have misclassification inside the circle in Figure 2.

Figure 2. Projected data on x-axis. Red dots belong to class 1 and the green ones to class 2.
The data inside the circle is misclassified.

Contrarily, when we maximize the whole expression for)(wJ , we achieve at

the same time a good separation between classes and a considerable
distance among their means in the projected data. Observe that on Figure 3

the misclassification has decreased compare to the first case. The vector ow

was found using equation 3.

)(12

1
mmSw wo −=

−

 Equation 3

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

-20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

40

W
o

Figure 3. The data from class 1 and 2 is projected on the vector

ow . The misclassification

occurs just on one sample. The distance between the projected means is 9.07.

It is important to add that the distance between the projected means on the
second case is not the maximum, but it is enough to separate the data more
accurately than on the first case.

The set of data used on the above analysis was found on [1].

MATLAB code
%%% First Question for HW 2 %%%
%%% Data fromTextbook: Pattern Recognition and Image Processing
page186, BOW

w1 = [8 12; 8 14; 9 16; 10 14; 12 13; 12 14; 11 17; 11 19; 14 24;...
 14 22; 16 21; 14 16; 16 17; 18 18; 18 20; 17 24; 19 22; 19 24;...
 21 24; 22 22];
w2 = [21 11; 19 14; 21 17; 23 14; 25 13; 24 20; 27 17; 28 15; 29
18;...
 27 23; 32 22; 30 36; 32 19; 33 25; 33 29; 35 22; 36 27; 37 25;...
 38 29; 37 31];

m1 = mean(w1);
m2 = mean(w2);

% The Fisher's determinant produces just 1 missclassified sample
C1 = (w1-[m1(1).*ones(20,1) m1(2).*ones(20,1)])'*(w1-
[m1(1).*ones(20,1) m1(2).*ones(20,1)])./20;
C2 = (w2-[m2(1).*ones(20,1) m2(2).*ones(20,1)])'*(w2-
[m2(1).*ones(20,1) m2(2).*ones(20,1)])./20;
Sw = C1 + C2;
Sw_i = inv(Sw);
Sb = (m1 - m2)'*(m1 - m2);
%%% Finding w_o
w_o = Sw_i*(m2'-m1')

%%% Projection of the classes into the vector w_o
x1 = w_o'*w1';
x2 = w_o'*w2';
y1 = w_o(2)/w_o(1).*x1;
y2 = w_o(2)/w_o(1).*x2;

%%% Visualizatio of projections and projection line
plot(w1(:,1),w1(:,2),'r.')

hold on;plot(w2(:,1),w2(:,2),'g.')
l = (w_o(2)/w_o(1)).*(-20:0.5:40);
hold on; plot((-20:0.5:40),l,'b')
hold on; plot(x1,y1,'r.')
hold on; plot(x2,y2,'g.')

for i = 1:length(x1)
 %%% orthogonal vectors to the w_o vector
 line([x1(i) w1(i,1)], [y1(i) w1(i,2)],'Color',[1 0 0])
 line([x2(i) w2(i,1)], [y2(i) w2(i,2)],'Color',[0 1 0])
end

x_m1 = w_o'*m1';
x_m2 = w_o'*m2';
y_m1 = w_o(2)/w_o(1).*x_m1;
y_m2 = w_o(2)/w_o(1).*x_m2;
hold on;plot(m1(1),m1(2),'k*','MarkerSize',10)
hold on;plot(m2(1),m2(2),'k*','MarkerSize',10)
line([x_m1 m1(1)],[y_m1 m1(2)],'Color',[1 0 1],'LineWidth',3)
line([x_m2 m2(1)],[y_m2 m2(2)],'Color',[1 0 1],'LineWidth',3)
distance_w_o = norm([x_m1 y_m1]-[x_m2 y_m2])

% Projection of means over the x-axis, the separation between means
is greater but the classification is NOT highly successful; 4
misclassified samples
figure;
plot(w1(:,1),w1(:,2),'r.')
hold on;plot(w2(:,1),w2(:,2),'g.')
hold on;plot(m1(1),m1(2),'k*','MarkerSize',10)
hold on;plot(m2(1),m2(2),'k*','MarkerSize',10)
line([m1(1) m1(1)],[0 m1(2)],'Color',[1 0 1],'LineWidth',3)
line([m2(1) m2(1)],[0 m2(2)],'Color',[1 0 1],'LineWidth',3)
for i = 1:length(x1)
 %%% orthogonal vectors to the w_o vector
 line([w1(i,1) w1(i,1)], [0 w1(i,2)],'Color',[1 0 0])
 line([w2(i,1) w2(i,1)], [0 w2(i,2)],'Color',[0 1 0])
end

distance_x_axis = m2(1)-m1(1)

Neural Network (NN)

The NN training code used was found in [2]. It was modified to perform the
classification stage and follow our requirements.

The code trains a 3-layer NN through back projection on dimension 2. On
such training method, we have a set composed by inputs and outputs, and an
initial array of weights. The weights are adjusted until the current output
matches or gets close to the output given on the training set.

Figure 4. Diagram of the 3-layer Neural Network.

321 ,, fff are the hidden layer functions,

we are using)tanh()(xxf i = for every i. 4f is just a sign function

The optimization of the weights is done using the gradient descent algorithm.
The stopping criteria are the number of iterations (10000) and a tolerance
error difference on the output, whichever is achieved first stops the
optimization process. There is a plot on Figure 5 showing how the error on
the output decreases on each iteration of the gradient descent algorithm.

1

X1

X2

w01

w11 w21

w14

w34

w24

Input Layer

Hidden Layer

Output Layer

f2

f1

f3

f4

The hidden layer function is)tanh()(xxf i = , for every i=1,2,3. The output

layer function is a sign function.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 5. Screenshot showing how the error on the output decreases with each iteration of

the gradient descent algorithm performed on the weights

After the weights ijw are computed, the network is complete and we can

proceed to classify the samples on the test set.

The data for the training and test set was generated randomly using a
Gaussian distribution with unity variance and different means for each class.
The initial value of the weights is also Gaussian distributed with a zero mean
and a variance of 10.

On the experiments, it is evident that if the variance on both classes is fixed to
1 and we increase the difference between means, we will have a better
classification. But when the difference between means is low, 1 or 2 units, the
error rate is between 10% and 40%

MATLAB code
%---
% MATLAB neural network backprop code
% by Phil Brierley
% www.philbrierley.com
% 29 March 2006
%
% Modified by me
% March 28, 2008
%
% This code implements the basic backpropagation of
% error learning algorithm. The network has tanh hidden
% neurons and a linear output neuron.
%
% adjust the learning rate with the slider
%
% feel free to improve!
%
%--
%user specified values
hidden_neurons = 3;
epochs = 10000;
% ------- load in the data -------
% XOR data
% train_inp = [1 1; 1 0; 0 1; 0 0];

% train_out = [1; 0; 0; 1];

m = 10;
t1 = [randn(m,1);1+randn(m,1)];
t2 = [randn(m,1);1+randn(m,1)];
train_inp = [t1 t2];
train_out = [zeros(m,1); ones(m,1)];

% check same number of patterns in each
if size(train_inp,1) ~= size(train_out,1)
 disp('ERROR: data mismatch')
 return
end

%standardise the data to mean=0 and standard deviation=1
%inputs
% mu_inp = mean(train_inp);
% sigma_inp = std(train_inp);
% train_inp = (train_inp(:,:) - mu_inp(:,1)) / sigma_inp(:,1);
%
%outputs
train_out = train_out';
mu_out = mean(train_out);
sigma_out = std(train_out);
train_out = (train_out(:,:) - mu_out(:,1)) / sigma_out(:,1);
train_out = train_out';

%read how many patterns
patterns = size(train_inp,1);

%add a bias as an input
bias = ones(patterns,1);
train_inp = [train_inp bias];

%read how many inputs
inputs = size(train_inp,2);

%---------- data loaded ------------

%--------- add some control buttons ---------

%add button for early stopping
hstop = uicontrol('Style','PushButton','String','Stop', 'Position',
[5 5 70 20],'callback','earlystop = 1;');
earlystop = 0;

%add button for resetting weights
hreset = uicontrol('Style','PushButton','String','Reset Wts',
'Position', get(hstop,'position')+[75 0 0 0],'callback','reset =
1;');
reset = 0;

%add slider to adjust the learning rate
hlr =
uicontrol('Style','slider','value',.1,'Min',.01,'Max',1,'SliderStep',
[0.01 0.1],'Position', get(hreset,'position')+[75 0 100 0]);

% ---------- set weights -----------------
%set initial random weights

weight_input_hidden = (randn(inputs,hidden_neurons) - 0.5)/10;
weight_hidden_output = (randn(1,hidden_neurons) - 0.5)/10;

%-----------------------------------
%--- Learning Starts Here! ---------
%-----------------------------------

%do a number of epochs
for iter = 1:epochs

 %get the learning rate from the slider
 alr = get(hlr,'value');
 blr = alr / 10;

 %loop through the patterns, selecting randomly
 for j = 1:patterns

 %select a random pattern
 patnum = round((rand * patterns) + 0.5);
 if patnum > patterns
 patnum = patterns;
 elseif patnum < 1
 patnum = 1;
 end

 %set the current pattern
 this_pat = train_inp(patnum,:);
 act = train_out(patnum,1);

 %calculate the current error for this pattern
 hval = (tanh(this_pat*weight_input_hidden))';
 pred = hval'*weight_hidden_output';
 error = pred - act;

 % adjust weight hidden - output
 delta_HO = error.*blr .*hval;
 weight_hidden_output = weight_hidden_output - delta_HO';

 % adjust the weights input - hidden
 delta_IH= alr.*error.*weight_hidden_output'.*(1-
(hval.^2))*this_pat;
 weight_input_hidden = weight_input_hidden - delta_IH';

 end
 % -- another epoch finished

 %plot overall network error at end of each epoch
 pred = weight_hidden_output*tanh(train_inp*weight_input_hidden)';
 error = pred' - train_out;
 err(iter) = (sum(error.^2))^0.5;

 figure(1);
 plot(err)

 %reset weights if requested
 if reset
 weight_input_hidden = (randn(inputs,hidden_neurons) -
0.5)/10;
 weight_hidden_output = (randn(1,hidden_neurons) - 0.5)/10;
 fprintf('weights reaset after %d epochs\n',iter);

 reset = 0;
 end

 %stop if requested
 if earlystop
 fprintf('stopped at epoch: %d\n',iter);
 break
 end

 %stop if error is small
 if err(iter) < 0.001
 fprintf('converged at epoch: %d\n',iter);
 break
 end

end

 %-----FINISHED---------
 %display actual,predicted & error
 fprintf('state after %d epochs\n',iter);
 a = (train_out* sigma_out(:,1)) + mu_out(:,1);
 b = (pred'* sigma_out(:,1)) + mu_out(:,1);
 act_pred_err = [a b b-a]

%--

% Classification stage added by me
% March 28, 2008

% The training stage is over, we have the weights for the network
n = 1;
samp = 1000;
set_1 = [randn(samp,n);1+randn(samp,n)];
set_2 = [randn(samp,n);1+randn(samp,n)];
% Add bias to the sets
set = [set_1 set_2 ones(samp*2,1)];
out = tanh(set*weight_input_hidden)*weight_hidden_output';
b = (out'* sigma_out(:,1)) + mu_out(:,1);
% Error rate
(samp-length(find(b(1:samp) < 0.2)))/samp

Support Vector Machine (SVM)

A SVM was implemented using MATLAB’s bioinformatics toolbox. The data
also belongs to MATLAB (fisheriris.mat). The data has useful information to
recognize three different classes of fish. On the example found in [3], the
classification consists on distinct one of the species from the other two.

On the first two lines the data is loaded, the next two lines divide the data into
two sets, the training set and the test set. The classperf command evaluates
the performance of the classifier based on the ground truth that has been
passed to function prior the classification process.

The training stage (see Figure 6) is handled by svmtrain, which based on the
ground truth finds the best separation surface between the two classes and

identifies the support vectors, i.e. the closest samples to the separation
surface.

4.5 5 5.5 6 6.5 7 7.5 8
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

0

1

Support Vectors

Figure 6. Support Vector Machine. Training stage. The classes contained on the training set
are separated by the black surface. The samples enclosed in circles are the support vectors.

The information is kept on a structure, which in turn is passed to the function
svmclassify. This function takes the test set and classifies the samples
according to their distance to the separation surface. In Figure 7 we can see
the results of the classification.

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5
Kernel Function: linear_kernel

0 (training)

0 (classified)

1 (training)

1 (classified)

Support Vectors

Figure 7. Classification of the samples in the test set based on the results from the training
stage.

At the end, the function classperf is called again to evaluate the accuracy of
the classification. The accuracy rate was 98.67% for a linear kernel. On the
following plots (Figure 8), you will find the results of using different kernels.

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5
Kernel Function: quadratic_kernel

0 (training)

0 (classified)

1 (training)

1 (classified)

Support Vectors

4 4.5 5 5.5 6 6.5 7 7.5 8

2

2.5

3

3.5

4

4.5

Kernel Function: rbf_kernel

0 (training)

0 (classified)

1 (training)

1 (classified)

Support Vectors

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5

Kernel Function: poly_kernel

0 (training)

0 (classified)

1 (training)

1 (classified)

Support Vectors

4 4.5 5 5.5 6 6.5 7 7.5 8

2

2.5

3

3.5

4

4.5

Kernel Function: mlp_kernel

0 (training)

0 (classified)

1 (training)

1 (classified)

Support Vectors

Figure 8. From top to bottom, left to right: quadratic kernel, rbf kernel, polynomial kernel, and
mlp kernel

The accuracy rates for the different kernels were very close together thus, it
seems that for the data set used, it is sufficient to implement a linear kernel.
Although the accuracy rates were very similar, it is important to note that the
corresponding to the multilayer perceptron kernel (mlp) was the lowest, 93%.
Notice that the data used is well separated, thus the error rate is low and the
separation surface is found easily.

MATLAB code
%%%% Bioinformatics toolbox MATLAB %%%%%%
%%%% Example:
%%%
http://www.mathworks.com/access/helpdesk/help/toolbox/bioinfo/index.h
t
%%% ml?/access/helpdesk/help/toolbox/bioinfo/ref/svmclassify.html

load fisheriris
data = [meas(:,1), meas(:,2)];
groups = ismember(species,'setosa');
[train, test] = crossvalind('holdOut',groups);
cp = classperf(groups);
svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);
title(sprintf('Kernel Function: %s',...
 func2str(svmStruct.KernelFunction)),...
 'interpreter','none');
classes = svmclassify(svmStruct,data(test,:),'showplot',true);
classperf(cp,classes,test);
cp.CorrectRate

Parzen Window

The Parzen window chosen to estimate the density of the data is a rectangle
with amplitude of 1 between -½ and ½.

-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7
0

0.5

1

Figure 9. Parzen window. Rectangle with amplitude 1 between -½ and ½

The data is divided into two sets, the estimation set and the test set. The
former set is estimates the density of the samples, and the latter is used in the
classification stage.

The window is shifted in such a way that the sample of interest, ox , is on its

center. Then, we count the number of samples that fall inside the window

centered on ox and we divide by the total number of samples. We repeat the

process with each sample of the estimation set and, at the end, we will have
the estimate of the density of the set, as shown on equation 4.

 Equation 4

Although the Parzen window approach provides an estimation of the density,
such density is not used directly on the classification stage. Instead, the

class to which ox belongs is chosen based on a majority vote criterion.

 Equation 5

After some manipulation of equation 5, one can verify that the classification of

ox could be based on the number of samples of each class that fall inside the

kernel. Therefore, ox belongs to the class that has the greater number inside

the kernel centered at ox , as it is displayed on equation 6.

 Equation 6

Two data sets on 1D, one for each class, were generated using Gaussian
distributions. As mentioned before, each set was divided in two, for
estimation and testing purposes. The variance was fixed to one for both sets
and the difference between the means was at least one. Each set has 1000
samples.

An example of the density estimation that this method provides is displayed
on Figure 10.

-4 -3 -2 -1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

class 1

class 2

Figure 10. Density estimation. Class 1 is originally Gaussian distributed with variance 1 and
mean 0. Class 2 is originally Gaussian distributed with variance 1 and mean 1.

The classification error depends on how close the classes are. For instance,
when the means are 0 and 1, for class 1 and 2 respectively, the error is on the
interval of 20% to 35%. But, when the classes are well separated (i.e.
difference of the means greater than 4), the error is less than 5%.

MATLAB Code
%%% Parzen Windows
clear
n = 1;
samp = 1000;
h = 1;
set_1 = randn(samp,n);
set_2 = 3+randn(samp,n);
train = 3*samp/4;
drawn_1 = set_1(floor(samp.*rand(train,n)));
drawn_1 = sort(drawn_1);

drawn_2 = set_2(floor(samp.*rand(train,n)));
drawn_2 = sort(drawn_2);

% The window is a rectangle centered at zero from with 1 from -1/2 to
1/2
for i = 1:length(drawn_1)
 ind = find(set_1 <= drawn_1(i)+1/2 & set_1 >= drawn_1(i)-1/2);
 p_1(i) = length(ind)/length(drawn_2);

 clear ind
 ind = find(set_2 <= drawn_2(i)+1/2 & set_2 >= drawn_2(i)-1/2);
 p_2(i) = length(ind)/length(drawn_2);

 clear ind
end
plot(drawn_1,p_1,'*-')
hold on; plot(drawn_2,p_2,'ro-')

%%% Classification
for i = 1:samp
 ind = find(set_1 <= set_1(i)+1/2 & set_1 >= set_1(i)-1/2);
 t_1(i,1) = length(ind);
 clear ind
 ind = find(set_2 <= set_1(i)+1/2 & set_2 >= set_1(i)-1/2);
 t_1(i,2) = length(ind);
 clear ind
% ind = find(set_1 <= set_2(i)+1/2 & set_1 >= set_2(i)-1/2);
% t_2(i,1) = length(ind);
% clear ind
% ind = find(set_2 <= set_2(i)+1/2 & set_2 >= set_2(i)-1/2);
% t_2(i,2) = length(ind);
% clear ind
end
% error rate
1 - length(find(t_1(:,1) >= t_1(:,2)))/samp

K-Nearest Neighbor (kNN)

The choice of the kernel was the same as for Parzen windows (see Figure 9).
The difference relies on the fact that such kernel doesn’t have a fixed
amplitude and width. Instead, those parameters are determined by the

default number of neighbors k that we want to have around ox .

As before, the data is Gaussian distributed with a unity variance and different
means for each class. One part of the data is in charge of estimating the
density of the set, and the other is used for testing.

The plots on Figure 11 present the density estimation based on different
values of k. The greater the number of k-neighbors, the coarser the
approximation of the density.

-4 -3 -2 -1 0 1 2 3 4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

-4 -3 -2 -1 0 1 2 3 4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

-4 -3 -2 -1 0 1 2 3 4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

-4 -3 -2 -1 0 1 2 3 4
0

0.01

0.02

0.03

0.04

0.05

0.06

Figure 11. Class 1 in red and class 2 in blue. From top to bottom, left to right: density
estimation with k = 5, k=21, k=51 and k=101 respectively

As it was mentioned on the case of Parzen Windows, the estimated density is
not used directly on the classification. The decision is found by assigning to

ox the class that has the greatest number of samples among the k-neighbors.

The classification error was lower that the error presented using the Parzen
windows technique. When the difference between the means is one, the
error is between 2% and 11%, using k=5. As expected, the error decreases
when the difference between the means is greater, being less that 1% when
the means are 4 units apart.

Even thought the estimation of the density drawn from this approach looks
noisier than the estimation given by the Parzen window, the classification
results are much better than the results obtained through Parzen windows.

MATLAB Code
%%% k-nearest Neighbor
clear
n = 1;
samp = 1000;
k = 5;
h = 1;
randn('seed',1)
set_1 = randn(samp,n); % Class 1
randn('seed',3)

set_2 = 1+randn(samp,n); % Class 2
train = samp/2;
% The first half of the vector 'drawn' is composed by elements of
class 1,
% the second part is composed by class 2
drawn = [set_1(1:train)' set_2(1:train)'];
drawn = sort(drawn);
class = zeros(1,samp);
l = 0.1;
for i = 1:samp
 ind = 0;
 c = 1;
 while ind < k
 in_1 = find(set_1 <= drawn(i)+c*l/2 & set_1 >= drawn(i)-
c*l/2);
 ind_1 = length(in_1);
 in_2 = find(set_2 <= drawn(i)+c*l/2 & set_2 >= drawn(i)-
c*l/2);
 ind_2 = length(in_2);
 ind = ind_2 + ind_1;
 c = c+1;
 end
 p_1(i) = ind_1/length(drawn);
 p_2(i) = ind_2/length(drawn);
 if ind_2 > ind_1
 class(i) = 2;
 else
 class(i) = 1;
 end
 clear ind c
end
figure;
plot(drawn,p_1,'*-')
hold on; plot(drawn,p_2,'ro-')

% Error rate
abs(train - length(find(class == 2)))/train

Nearest Neighbor (NN)

In the NN approach, there is not need to use a kernel and the density is never

estimated nor used. This method calculates the distance from ox , the sample

to be classified, to every sample on each class. Afterwards, ox is assigned to

the class that contains the sample with the minimum distance.

The data was Gaussian distributed, unity variance and different mean for
each class. For the distance, the Euclidean metric was picked. The
classification error depends on the data, especially on how spread it is.

The complexity of the algorithm depends on the number of samples in the set,
the dimension size and the metric implemented to find the distance. In
general, the error rate is low when the data is separable.

MATLAB Code
%%% NN

clear
n = 10;
samp = 1000;
set_1 = randn(samp,n); % Class 1
set_2 = 1+randn(samp,n); % Class 2
train = samp/2;
% The first half of the vector 'drawn' is composed by elements of
class 1,
% the second part is composed by class 2
drawn = [randn(train,n); (1+randn(train,n))];
class = zeros(1,samp);
for i = 1:samp
 dv = repmat(drawn(i,:)',1,samp);
 if min(norm(dv - set_1')) < min(norm(dv - set_2'))
 class(i) = 2;
 else
 class(i) = 1;
 end
end

CONCLUSIONS

In general, I would recommend, as a first approach, to implement the kNN
method. It is a simple method that performed very well on the data that was
used on this assignment. If it is important to achieve a good density estimate,
the Parzen Windows method should be used instead; since the estimate
provided by kNN was noisier than the Parzen Windows’ one.

Most of the artificial data used on the assignment was nicely distributed, that
didn’t have outliers. The presence of outliers makes the NN and SVM
techniques less reliable. SVM also depends on the kernel used to find the
separation surface. The plots on Figure 8 show that it is not required to have
several degrees of freedom on the separation surface to accomplish good
classification results.

It was demonstrated numerically that Fisher’s discriminant should be used as
it is. When the denominator is removed, the information regarding the spread
of the data is removed as well.

BIBLIOGRAPHY

[1] Shing-Tze Bow, Pattern Recognition and Image Preprocessing, Marcel
Dekker, New York, 2002, pp 182-188.
[2] Phil Brierley, Neural Network training code for MATLAB,
www.philbrierley.com
[3] Bioinformatics Toolbox Example,
http://www.mathworks.com/access/helpdesk/help/toolbox/bioinfo/index.html?/
access/helpdesk/help/toolbox/bioinfo/ref/svmclassify.html

