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The Fisher’s discriminant provides information about the separation between 
the means of two classes as well as the within-class spreads of the data 
points.  Let’s recall that the numerator of the cost function )(wJ is the squared 

distance of the projected means onto the vector w.  Furthermore, such 
numerator can be written as seen in equation 1. 
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The projected means for class 2 and 1 are represented by 12 , pp mm , 

respectively,  12 , mm  are the original means of the data, w is the vector on 

which the data is projected and the matrix BS  is called the between-class 

covariance matrix. 
 
On the other hand, the denominator of Fisher’s discriminant is the sum of the 
within-class scatters of the projected data.   Equation 2 shows the relationship 

between the within-class scatters 21 ,CC  of the original data, and the projected 

ones 21 , pp CC  through the projection vector w.   The matrix wS  is called the 

total within-class covariance matrix. 
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Notice that if we were going to use only the denominator to find the w that 
maximizes the cost function )(wJ , we would be finding the best w that gives 

us the greatest separation between means.  Although this approach is alluring, 
it is a naïve one, since it doesn’t provide any information about the spread of 
the data.   
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Figure 1.  Class 1 is represented by the red dots and class 2 is denoted by the green dots.   
The black stars are the means of each class.  The lines are the projections of the means onto 
the x-axis.  The distance between the projected means is 14.09 

 
In Figure 1 we can see how finding the greatest distance of the projected 
means doesn’t yield the best separation between classes necessarily.  

According to the numerator of )(wJ , the vector ow that maximizes such 

expression for our data is the x-axis.  If we project all the data on such vector, 
we will have misclassification inside the circle in Figure 2.   

 
Figure 2.  Projected data on x-axis.  Red dots belong to class 1 and the green ones to class 2.  
The data inside the circle is misclassified.  

 
Contrarily, when we maximize the whole expression for )(wJ , we achieve at 

the same time a good separation between classes and a considerable 
distance among their means in the projected data.  Observe that on Figure 3 

the misclassification has decreased compare to the first case.  The vector ow  

was found using equation 3. 
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Figure 3.  The data from class 1 and 2 is projected on the vector

ow .  The misclassification 

occurs just on one sample.  The distance between the projected means is 9.07. 

 
It is important to add that the distance between the projected means on the 
second case is not the maximum, but it is enough to separate the data more 
accurately than on the first case. 
 
The set of data used on the above analysis was found on [1]. 
 
MATLAB code 
%%% First Question for HW 2 %%% 
%%% Data fromTextbook: Pattern Recognition and Image Processing 
page186, BOW 
  
w1 = [ 8 12; 8 14; 9 16; 10 14; 12 13; 12 14; 11 17; 11 19; 14 24;... 
    14 22; 16 21; 14 16; 16 17; 18 18; 18 20; 17 24; 19 22; 19 24;... 
    21 24; 22 22]; 
w2 = [21 11; 19 14; 21 17; 23 14; 25 13; 24 20; 27 17; 28 15; 29 
18;... 
    27 23; 32 22; 30 36; 32 19; 33 25; 33 29; 35 22; 36 27; 37 25;... 
    38 29; 37 31]; 
  
m1 = mean(w1); 
m2 = mean(w2); 
  
% The Fisher's determinant produces just 1 missclassified sample 
C1 = (w1-[m1(1).*ones(20,1) m1(2).*ones(20,1)])'*(w1-
[m1(1).*ones(20,1) m1(2).*ones(20,1)])./20; 
C2 = (w2-[m2(1).*ones(20,1) m2(2).*ones(20,1)])'*(w2-
[m2(1).*ones(20,1) m2(2).*ones(20,1)])./20; 
Sw = C1 + C2; 
Sw_i = inv(Sw); 
Sb = (m1 - m2)'*(m1 - m2); 
%%% Finding w_o 
w_o = Sw_i*(m2'-m1') 
  
%%% Projection of the classes into the vector w_o 
x1 = w_o'*w1'; 
x2 = w_o'*w2'; 
y1 = w_o(2)/w_o(1).*x1; 
y2 = w_o(2)/w_o(1).*x2; 
  
%%% Visualizatio of projections and projection line 
plot(w1(:,1),w1(:,2),'r.') 



hold on;plot(w2(:,1),w2(:,2),'g.') 
l = (w_o(2)/w_o(1)).*(-20:0.5:40); 
hold on; plot((-20:0.5:40),l,'b') 
hold on; plot(x1,y1,'r.') 
hold on; plot(x2,y2,'g.') 
  
for i = 1:length(x1) 
    %%% orthogonal vectors to the w_o vector 
    line([x1(i) w1(i,1)], [y1(i) w1(i,2)],'Color',[1 0 0]) 
    line([x2(i) w2(i,1)], [y2(i) w2(i,2)],'Color',[0 1 0])  
end 
  
x_m1 = w_o'*m1'; 
x_m2 = w_o'*m2'; 
y_m1 = w_o(2)/w_o(1).*x_m1; 
y_m2 = w_o(2)/w_o(1).*x_m2; 
hold on;plot(m1(1),m1(2),'k*','MarkerSize',10) 
hold on;plot(m2(1),m2(2),'k*','MarkerSize',10) 
line([x_m1 m1(1)],[y_m1 m1(2)],'Color',[1 0 1],'LineWidth',3) 
line([x_m2 m2(1)],[y_m2 m2(2)],'Color',[1 0 1],'LineWidth',3) 
distance_w_o = norm([x_m1 y_m1]-[x_m2 y_m2]) 
  
% Projection of means over the x-axis, the separation between means 
is greater but the classification is NOT highly successful; 4 
misclassified samples 
figure; 
plot(w1(:,1),w1(:,2),'r.') 
hold on;plot(w2(:,1),w2(:,2),'g.') 
hold on;plot(m1(1),m1(2),'k*','MarkerSize',10) 
hold on;plot(m2(1),m2(2),'k*','MarkerSize',10) 
line([m1(1) m1(1)],[0 m1(2)],'Color',[1 0 1],'LineWidth',3) 
line([m2(1) m2(1)],[0 m2(2)],'Color',[1 0 1],'LineWidth',3) 
for i = 1:length(x1) 
    %%% orthogonal vectors to the w_o vector 
    line([w1(i,1) w1(i,1)], [0 w1(i,2)],'Color',[1 0 0]) 
    line([w2(i,1) w2(i,1)], [0 w2(i,2)],'Color',[0 1 0]) 
end 
  
distance_x_axis = m2(1)-m1(1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Neural Network (NN) 
 
The NN training code used was found in [2].  It was modified to perform the 
classification stage and follow our requirements. 
 
The code trains a 3-layer NN through back projection on dimension 2.  On 
such training method, we have a set composed by inputs and outputs, and an 
initial array of weights.  The weights are adjusted until the current output 
matches or gets close to the output given on the training set.   
  

 
Figure 4.  Diagram of the 3-layer Neural Network.  

321 ,, fff  are the hidden layer functions, 

we are using )tanh()( xxf i =  for every i.  4f  is just a sign function 

 
The optimization of the weights is done using the gradient descent algorithm.  
The stopping criteria are the number of iterations (10000) and a tolerance 
error difference on the output, whichever is achieved first stops the 
optimization process.  There is a plot on Figure 5 showing how the error on 
the output decreases on each iteration of the gradient descent algorithm. 
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The hidden layer function is )tanh()( xxf i = ,  for every i=1,2,3.   The output 

layer function is a sign function.  
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Figure 5.  Screenshot showing how the error on the output decreases with each iteration of 

the gradient descent algorithm performed on the weights 

 

After the weights ijw are computed, the network is complete and we can 

proceed to classify the samples on the test set.   
 
The data for the training and test set was generated randomly using a 
Gaussian distribution with unity variance and different means for each class.  
The initial value of the weights is also Gaussian distributed with a zero mean 
and a variance of 10.  
 
On the experiments, it is evident that if the variance on both classes is fixed to 
1 and we increase the difference between means, we will have a better 
classification.  But when the difference between means is low, 1 or 2 units, the 
error rate is between 10% and 40% 
 
MATLAB code 
%--------------------------------------------------------- 
% MATLAB neural network backprop code 
% by Phil Brierley 
% www.philbrierley.com 
% 29 March 2006 
% 
% Modified by me 
% March 28, 2008 
% 
% This code implements the basic backpropagation of 
% error learning algorithm. The network has tanh hidden   
% neurons and a linear output neuron. 
% 
% adjust the learning rate with the slider 
% 
% feel free to improve! 
% 
%-------------------------------------------------------- 
%user specified values 
hidden_neurons = 3; 
epochs = 10000; 
% ------- load in the data ------- 
% XOR data 
% train_inp = [1 1; 1 0; 0 1; 0 0]; 



% train_out = [1; 0; 0; 1]; 
  
m = 10; 
t1 = [randn(m,1);1+randn(m,1)]; 
t2 = [randn(m,1);1+randn(m,1)]; 
train_inp = [t1 t2]; 
train_out = [zeros(m,1); ones(m,1)]; 
  
% check same number of patterns in each 
if size(train_inp,1) ~= size(train_out,1) 
    disp('ERROR: data mismatch') 
   return  
end     
  
%standardise the data to mean=0 and standard deviation=1 
%inputs 
% mu_inp = mean(train_inp); 
% sigma_inp = std(train_inp); 
% train_inp = (train_inp(:,:) - mu_inp(:,1)) / sigma_inp(:,1); 
%  
%outputs 
train_out = train_out'; 
mu_out = mean(train_out); 
sigma_out = std(train_out); 
train_out = (train_out(:,:) - mu_out(:,1)) / sigma_out(:,1); 
train_out = train_out'; 
  
%read how many patterns 
patterns = size(train_inp,1); 
  
%add a bias as an input 
bias = ones(patterns,1); 
train_inp = [train_inp bias]; 
  
%read how many inputs 
inputs = size(train_inp,2); 
  
%---------- data loaded ------------ 
  
  
%--------- add some control buttons --------- 
  
%add button for early stopping 
hstop = uicontrol('Style','PushButton','String','Stop', 'Position', 
[5 5 70 20],'callback','earlystop = 1;');  
earlystop = 0; 
  
%add button for resetting weights 
hreset = uicontrol('Style','PushButton','String','Reset Wts', 
'Position', get(hstop,'position')+[75 0 0 0],'callback','reset = 
1;');  
reset = 0; 
  
%add slider to adjust the learning rate 
hlr = 
uicontrol('Style','slider','value',.1,'Min',.01,'Max',1,'SliderStep',
[0.01 0.1],'Position', get(hreset,'position')+[75 0 100 0]); 
  
  
% ---------- set weights ----------------- 
%set initial random weights 



weight_input_hidden = (randn(inputs,hidden_neurons) - 0.5)/10; 
weight_hidden_output = (randn(1,hidden_neurons) - 0.5)/10; 
  
%----------------------------------- 
%--- Learning Starts Here! --------- 
%----------------------------------- 
  
%do a number of epochs 
for iter = 1:epochs 
     
    %get the learning rate from the slider 
    alr = get(hlr,'value'); 
    blr = alr / 10; 
     
    %loop through the patterns, selecting randomly 
    for j = 1:patterns 
         
        %select a random pattern 
        patnum = round((rand * patterns) + 0.5); 
        if patnum > patterns 
            patnum = patterns; 
        elseif patnum < 1 
            patnum = 1;     
        end 
        
        %set the current pattern 
        this_pat = train_inp(patnum,:); 
        act = train_out(patnum,1); 
         
        %calculate the current error for this pattern 
        hval = (tanh(this_pat*weight_input_hidden))'; 
        pred = hval'*weight_hidden_output'; 
        error = pred - act; 
  
        % adjust weight hidden - output 
        delta_HO = error.*blr .*hval; 
        weight_hidden_output = weight_hidden_output - delta_HO'; 
  
        % adjust the weights input - hidden 
        delta_IH= alr.*error.*weight_hidden_output'.*(1-
(hval.^2))*this_pat; 
        weight_input_hidden = weight_input_hidden - delta_IH'; 
         
    end 
    % -- another epoch finished 
     
    %plot overall network error at end of each epoch 
    pred = weight_hidden_output*tanh(train_inp*weight_input_hidden)'; 
    error = pred' - train_out; 
    err(iter) =  (sum(error.^2))^0.5; 
     
    figure(1); 
    plot(err) 
     
     
    %reset weights if requested 
    if reset 
        weight_input_hidden = (randn(inputs,hidden_neurons) - 
0.5)/10; 
        weight_hidden_output = (randn(1,hidden_neurons) - 0.5)/10; 
        fprintf('weights reaset after %d epochs\n',iter); 



        reset = 0; 
    end 
     
    %stop if requested 
    if earlystop 
        fprintf('stopped at epoch: %d\n',iter);  
        break  
    end  
  
    %stop if error is small 
    if err(iter) < 0.001 
        fprintf('converged at epoch: %d\n',iter); 
        break  
    end 
        
end 
  
   %-----FINISHED---------  
   %display actual,predicted & error 
   fprintf('state after %d epochs\n',iter); 
   a = (train_out* sigma_out(:,1)) + mu_out(:,1); 
   b = (pred'* sigma_out(:,1)) + mu_out(:,1); 
   act_pred_err = [a b b-a] 
   
%--------------------------------------------------------------------
--- 
% Classification stage added by me 
% March 28, 2008 
  
% The training stage is over, we have the weights for the network 
n = 1; 
samp = 1000; 
set_1 = [randn(samp,n);1+randn(samp,n)]; 
set_2 = [randn(samp,n);1+randn(samp,n)]; 
% Add bias to the sets 
set = [set_1 set_2 ones(samp*2,1)]; 
out = tanh(set*weight_input_hidden)*weight_hidden_output'; 
b = (out'* sigma_out(:,1)) + mu_out(:,1); 
% Error rate 
(samp-length(find(b(1:samp) < 0.2)))/samp 

 
 
Support Vector Machine (SVM) 
 
A SVM was implemented using MATLAB’s bioinformatics toolbox.  The data 
also belongs to MATLAB (fisheriris.mat).   The data has useful information to 
recognize three different classes of fish.  On the example found in [3], the 
classification consists on distinct one of the species from the other two.   
 
On the first two lines the data is loaded, the next two lines divide the data into 
two sets, the training set and the test set.  The classperf command evaluates 
the performance of the classifier based on the ground truth that has been 
passed to function prior the classification process. 
 
The training stage (see Figure 6) is handled by svmtrain, which based on the 
ground truth finds the best separation surface between the two classes and 



identifies the support vectors, i.e. the closest samples to the separation 
surface. 
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Figure 6.  Support Vector Machine.  Training stage.  The classes contained on the training set 
are separated by the black surface.  The samples enclosed in circles are the support vectors. 

 
The information is kept on a structure, which in turn is passed to the function 
svmclassify.  This function takes the test set and classifies the samples 
according to their distance to the separation surface.   In Figure 7 we can see 
the results of the classification. 
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Figure 7.  Classification of the samples in the test set based on the results from the training 
stage.   

 
At the end, the function classperf is called again to evaluate the accuracy of 
the classification.   The accuracy rate was 98.67% for a linear kernel.  On the 
following plots (Figure 8), you will find the results of using different kernels. 



4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5
Kernel Function: quadratic_kernel

 

 

0 (training)

0 (classified)

1 (training)

1 (classified)

Support Vectors

 
4 4.5 5 5.5 6 6.5 7 7.5 8

2

2.5

3

3.5

4

4.5

Kernel Function: rbf_kernel

 

 

0 (training)

0 (classified)

1 (training)

1 (classified)

Support Vectors

 

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5

Kernel Function: poly_kernel

 

 

0 (training)

0 (classified)

1 (training)

1 (classified)

Support Vectors

 
4 4.5 5 5.5 6 6.5 7 7.5 8

2

2.5

3

3.5

4

4.5

Kernel Function: mlp_kernel

 

 

0 (training)

0 (classified)

1 (training)

1 (classified)

Support Vectors

 
Figure 8.   From top to bottom, left to right: quadratic kernel, rbf kernel, polynomial kernel, and 
mlp kernel 

 
The accuracy rates for the different kernels were very close together thus, it 
seems that for the data set used, it is sufficient to implement a linear kernel. 
Although the accuracy rates were very similar, it is important to note that the 
corresponding to the multilayer perceptron kernel (mlp) was the lowest, 93%.  
Notice that the data used is well separated, thus the error rate is low and the 
separation surface is found easily. 
 
 
MATLAB code 
%%%% Bioinformatics toolbox MATLAB %%%%%% 
%%%% Example: 
%%% 
http://www.mathworks.com/access/helpdesk/help/toolbox/bioinfo/index.h
t 
%%% ml?/access/helpdesk/help/toolbox/bioinfo/ref/svmclassify.html 
  
load fisheriris 
data = [meas(:,1), meas(:,2)]; 
groups = ismember(species,'setosa'); 
[train, test] = crossvalind('holdOut',groups); 
cp = classperf(groups); 
svmStruct = svmtrain(data(train,:),groups(train),'showplot',true); 
title(sprintf('Kernel Function: %s',... 
              func2str(svmStruct.KernelFunction)),... 
              'interpreter','none'); 
classes = svmclassify(svmStruct,data(test,:),'showplot',true); 
classperf(cp,classes,test); 
cp.CorrectRate 

 



 
Parzen Window 
 
The Parzen window chosen to estimate the density of the data is a rectangle 
with amplitude of 1 between -½ and ½. 
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Figure 9.  Parzen window.  Rectangle with amplitude 1 between -½ and ½ 

 
The data is divided into two sets, the estimation set and the test set.  The 
former set is estimates the density of the samples, and the latter is used in the 
classification stage.   
 

The window is shifted in such a way that the sample of interest, ox , is on its 

center.  Then, we count the number of samples that fall inside the window 

centered on ox  and we divide by the total number of samples.   We repeat the 

process with each sample of the estimation set and, at the end, we will have 
the estimate of the density of the set, as shown on equation 4. 
 

     Equation 4 

 
Although the Parzen window approach provides an estimation of the density, 
such density is not used directly on the classification stage.   Instead, the 

class to which ox  belongs is chosen based on a majority vote criterion.    

 

       Equation 5 

 
After some manipulation of equation 5, one can verify that the classification of 

ox  could be based on the number of samples of each class that fall inside the 

kernel.  Therefore, ox  belongs to the class that has the greater number inside 

the kernel centered at ox , as it is displayed on equation 6. 

 



     Equation 6 

 
Two data sets on 1D, one for each class, were generated using Gaussian 
distributions.  As mentioned before, each set was divided in two, for 
estimation and testing purposes.   The variance was fixed to one for both sets 
and the difference between the means was at least one.  Each set has 1000 
samples. 
 
An example of the density estimation that this method provides is displayed 
on Figure 10. 
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Figure 10.  Density estimation.  Class 1 is originally Gaussian distributed with variance 1 and 
mean 0.   Class 2 is originally Gaussian distributed with variance 1 and mean 1. 

 
The classification error depends on how close the classes are. For instance, 
when the means are 0 and 1, for class 1 and 2 respectively, the error is on the 
interval of 20% to 35%.   But, when the classes are well separated (i.e. 
difference of the means greater than 4), the error is less than 5%. 
 
MATLAB Code 
%%% Parzen Windows 
clear 
n = 1; 
samp = 1000; 
h = 1; 
set_1 = randn(samp,n); 
set_2 = 3+randn(samp,n); 
train = 3*samp/4; 
drawn_1 = set_1(floor(samp.*rand(train,n))); 
drawn_1 = sort(drawn_1); 



drawn_2 = set_2(floor(samp.*rand(train,n))); 
drawn_2 = sort(drawn_2); 
  
% The window is a rectangle centered at zero from with 1 from -1/2 to 
1/2 
for i = 1:length(drawn_1) 
    ind = find(set_1 <= drawn_1(i)+1/2 & set_1 >= drawn_1(i)-1/2); 
    p_1(i) = length(ind)/length(drawn_2); 
 
    clear ind 
    ind = find(set_2 <= drawn_2(i)+1/2 & set_2 >= drawn_2(i)-1/2); 
    p_2(i) = length(ind)/length(drawn_2); 
 
    clear ind 
end 
plot(drawn_1,p_1,'*-') 
hold on; plot(drawn_2,p_2,'ro-') 
  
%%% Classification 
for i = 1:samp 
    ind = find(set_1 <= set_1(i)+1/2 & set_1 >= set_1(i)-1/2); 
    t_1(i,1) = length(ind); 
    clear ind 
    ind = find(set_2 <= set_1(i)+1/2 & set_2 >= set_1(i)-1/2); 
    t_1(i,2) = length(ind); 
    clear ind     
%     ind = find(set_1 <= set_2(i)+1/2 & set_1 >= set_2(i)-1/2); 
%     t_2(i,1) = length(ind); 
%     clear ind 
%     ind = find(set_2 <= set_2(i)+1/2 & set_2 >= set_2(i)-1/2); 
%     t_2(i,2) = length(ind); 
%     clear ind  
end 
% error rate 
1 - length(find(t_1(:,1) >= t_1(:,2)))/samp 

 
 
K-Nearest Neighbor (kNN) 
 
The choice of the kernel was the same as for Parzen windows (see Figure 9).   
The difference relies on the fact that such kernel doesn’t have a fixed 
amplitude and width.  Instead, those parameters are determined by the 

default number of neighbors k that we want to have around ox .    

 
As before, the data is Gaussian distributed with a unity variance and different 
means for each class.  One part of the data is in charge of estimating the 
density of the set, and the other is used for testing. 
 
The plots on Figure 11 present the density estimation based on different 
values of k.  The greater the number of k-neighbors, the coarser the 
approximation of the density.  
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Figure 11.  Class 1 in red and class 2 in blue.   From top to bottom, left to right:  density 
estimation with k = 5, k=21, k=51 and k=101 respectively 

 
As it was mentioned on the case of Parzen Windows, the estimated density is 
not used directly on the classification.   The decision is found by assigning to 

ox  the class that has the greatest number of samples among the k-neighbors. 

 
The classification error was lower that the error presented using the Parzen 
windows technique.   When the difference between the means is one, the 
error is between 2% and 11%, using k=5. As expected, the error decreases 
when the difference between the means is greater, being less that 1% when 
the means are 4 units apart.  
 
Even thought the estimation of the density drawn from this approach looks 
noisier than the estimation given by the Parzen window, the classification 
results are much better than the results obtained through Parzen windows. 
 
MATLAB Code 
%%% k-nearest Neighbor 
clear 
n = 1; 
samp = 1000; 
k = 5; 
h = 1; 
randn('seed',1) 
set_1 = randn(samp,n);    % Class 1 
randn('seed',3) 



set_2 = 1+randn(samp,n);  % Class 2 
train = samp/2; 
% The first half of the vector 'drawn' is composed by elements of 
class 1, 
% the second part is composed by class 2 
drawn = [set_1(1:train)' set_2(1:train)']; 
drawn = sort(drawn); 
class = zeros(1,samp); 
l = 0.1; 
for i = 1:samp 
    ind = 0; 
    c = 1; 
    while ind < k 
        in_1 = find(set_1 <= drawn(i)+c*l/2 & set_1 >= drawn(i)-
c*l/2); 
        ind_1 = length(in_1); 
        in_2 = find(set_2 <= drawn(i)+c*l/2 & set_2 >= drawn(i)-
c*l/2); 
        ind_2 = length(in_2); 
        ind = ind_2 + ind_1; 
        c = c+1; 
    end 
    p_1(i) = ind_1/length(drawn); 
    p_2(i) = ind_2/length(drawn); 
    if ind_2 > ind_1 
        class(i) = 2; 
    else 
        class(i) = 1; 
    end 
    clear ind c 
end 
figure; 
plot(drawn,p_1,'*-') 
hold on; plot(drawn,p_2,'ro-') 
  
% Error rate 
abs(train - length(find(class == 2)))/train 
 
Nearest Neighbor (NN) 
 
In the NN approach, there is not need to use a kernel and the density is never 

estimated nor used.  This method calculates the distance from ox , the sample 

to be classified, to every sample on each class.  Afterwards, ox  is assigned to 

the class that contains the sample with the minimum distance.    
 
The data was Gaussian distributed, unity variance and different mean for 
each class.  For the distance, the Euclidean metric was picked.  The 
classification error depends on the data, especially on how spread it is.    
 
The complexity of the algorithm depends on the number of samples in the set, 
the dimension size and the metric implemented to find the distance.  In 
general, the error rate is low when the data is separable. 
 
 
MATLAB Code 
%%% NN 



clear 
n = 10; 
samp = 1000; 
set_1 = randn(samp,n);    % Class 1 
set_2 = 1+randn(samp,n);  % Class 2 
train = samp/2; 
% The first half of the vector 'drawn' is composed by elements of 
class 1, 
% the second part is composed by class 2 
drawn = [randn(train,n); (1+randn(train,n))]; 
class = zeros(1,samp); 
for i = 1:samp 
    dv = repmat(drawn(i,:)',1,samp); 
    if min(norm(dv - set_1')) < min(norm(dv - set_2')) 
        class(i) = 2; 
    else 
        class(i) = 1; 
    end 
end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CONCLUSIONS 
 
In general, I would recommend, as a first approach, to implement the kNN 
method.   It is a simple method that performed very well on the data that was 
used on this assignment.  If it is important to achieve a good density estimate, 
the Parzen Windows method should be used instead; since the estimate 
provided by kNN was noisier than the Parzen Windows’ one. 
 
Most of the artificial data used on the assignment was nicely distributed, that 
didn’t have outliers.   The presence of outliers makes the NN and SVM 
techniques less reliable.  SVM also depends on the kernel used to find the 
separation surface.  The plots on Figure 8 show that it is not required to have 
several degrees of freedom on the separation surface to accomplish good 
classification results. 
 
It was demonstrated numerically that Fisher’s discriminant should be used as 
it is.  When the denominator is removed, the information regarding the spread 
of the data is removed as well. 
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