1. Let $f_n \in L^1(0,1)$ such that $f_n \to f$ in L^1 . Show there exists $M \in \mathbb{N}$ such that

$$\limsup_{n \to \infty} \int_{\{|f_n| > M\}} |f_n| = 0.$$

- 2. Let (X, \mathcal{M}, μ) be a measure space, f_n and f are μ -measureable functions on X.
 - (a) Prove $f_n \to f$ in measure implies there is a subsequence $\{f_{n_k}\}_k$ converging to f a.e.
 - (b) Suppose now that $f_n \to f$ a.e. Prove or disprove that f_n converges to f in measure, under the following hypotheses:
 - i. $\mu(X) < \infty$.
 - ii. μ is sigma-finite
 - iii. No additional assumptions on our space.
- 3. Let (X, \mathcal{M}, μ) be a sigma-finite measure space and let $f \in L^p(\mu), 1 \le p < \infty$. Show

$$\int_X |f|^p d\mu = p \int_{-\infty}^\infty \lambda^{p-1} \mu(\{|f| > \lambda\}) d\lambda.$$

Where did you use sigma-finiteness?

4. Two real-valued functions f and g defined on [0,1] are said to be comonotone if:

$$(f(x) - f(y)) (g(x) - g(y)) \ge 0$$

for all $x, y \in [0, 1]$. Suppose the two functions are Lebesgue measurable. Prove that:

$$\left(\int_0^1 f(t)dt\right)\left(\int_0^1 g(t)dt\right) \le \int_0^1 f(t)g(t)dt.$$

5. Let $f \in L^2(\mathbb{R})$ and let $f_0(x) = xf(x)$. Show that $||f||_1 \le (8||f||_2 ||f_0||_2)^{1/2}$. (Hint: consider $\{|x| > a\}$ and $\{|x| \le a\}$.)

6. Let $g \in L^p(\mathbb{R}), 1 \leq p < \infty$ and $f(x) = e^{-|x|}$. Show where you use Fubini's and Tonelli's Theorems respectively to prove

$$\int_{-\infty}^{\infty} (f * g)^p(x) dx = \frac{2}{p} \int_{-\infty}^{\infty} g(x)^p dx.$$

- 7. Let \mathcal{A} be the σ -algebra in \mathbb{R}^2 generated by the family of sets $\{(x,y): x \geq r_1, y \in [r_2, r_3)\}$, where $r_j \in \mathbb{Q}$ for j = 1, 2, 3. Prove or disprove \mathcal{A} is the Borel σ -algebra on \mathbb{R}^2 .
- 8. Let (X, \mathcal{M}, μ) be a finite measure space. Let $f_n \to f$ in $L^p, 1 \le p < \infty$. Fix $\epsilon > 0$ and show there exists $\delta = \delta(\epsilon) > 0$ such that $\forall A \in \mathcal{M}$ with $\mu A < \delta$, we have $\int_A |f_n| < \epsilon$.
- 9. (Test 2-2) Let $f \in L^1([0,1])$. Prove that the function

$$G(t) = \int_0^1 \cos(tf(x))dx$$

is differentiable with respect to t.