
Section 1: 

In the Parametric Method section of the course, we learned how to draw a 
separation hyperplane between two classes by obtaining w0, the argmax of the cost 
function J(w)=wTSBw / wTSww. The solution was found to be w0= Sw

-1(m1-m2), where 
m1 and m2 are the sample means of each class, respectively. 

Some students raised the question: can one simply use J(w)= wTSBw instead (i.e. 
setting Sw as the identity matrix in the solution wo? Investigate this question by 
numerical experimentation. 

In our numerical experiment, the data used is of the following nature: 
• We decided on using 3 class data 
• An 8 dimensional data was chosen to be reduced to a 3 –dimensional using fisher 

linear discriminant analysis. 
o The choice of 8D data is arbitrary 
o It is reduced to 3-d because we have 3 classes and it is possible to 

visualize the 3-d data 
• The data is a random sample from ‘Multivariate Normal Distribution’. 

o We have used ‘mnvrnd’ from MATLAB to generate the data 
• The code for FLDA (Fisher Linear Discriminant Analysis) is obtained from 

http://www.mit.edu/~linuo/Matlab%20Scripts.html 
• We have used 300 training data points and 150 test data points 

 
We followed the “Design of Experiment” methodology to run our numerical experiments. 
The following two factors are considered here: 

1. Mean of the normal distribution 
2. Co-variance of the normal distribution 
3. Co-variance taken as Identity Matrix 

 
For each of the above factors we have a ‘high value’ and ‘low value’ as explained below: 

1. Distribution means 
a. If the distribution means of the 3 classes are far apart we consider this as 

the ‘high’ value else it is ‘low value’ 
2. Co-Variance 

a. The ‘covariance matrix elements’ of the distributions are taken either less 
than 1 (< 1) for small covariance case or >>1 (greater than 1 and less than 
10) for large covariance case. 

3. For the case of analyzing the importance of within class scatter, covariance is 
taken as an identity matrix (for low value) or as stated in point 2 (high value) 

a. Scatter matrix is Identity Matrix – Low value 
b. Scatter matrix is not Identity Matrix but calculated – High value 

 
We have a total of 8 (2 * 2 * 2) possible experiments. We have a repeat for each 
experiment to confirm the experimental run. We have performed the classification using 
majority voting procedure and the results are shown in Table 1: 

http://www.mit.edu/%7Elinuo/Matlab%20Scripts.html


 
 

High 
(Mean & 
Covariance) 

Low 
(Mean & 
Covariance) 

High 
Covariance 
& Low Mean 

Low 
Covariance 
& High 
Mean 

 
 High 
(Scatter) 

0.7 0.91 0.87 0.72 
Low 
(Scatter) 

0.67 0.9 0.73 0.67 

  
Table 1. Classification Results of the test data reduced from 8-D space to 3-D space 

 
Reasoning: 
 
We found that the scatter (with-in class) has to be minimized because a huge spread in 
the data points of the classes resulted in an inefficient classification (bolded in the table 
above). This is evident in the case where the means are not far apart and the covariance 
matrix of the classes is high (The spread is high). Minimizing the with-in class scatter has 
always resulted in a better classification as seen in the results above. The figures below 
help in visualizing the classification. 
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Computational Issues & Conclusions: 
 
We have tested the computational issues that might arise for the calculation of the scatter 
matrix. As we increased the dimension (ex. >30) for a multi-class case (>2 classes), the 
computations became slow. We found that for a data-set with large number of features, 
the scatter matrix usage might result in a huge computational burden. The scatter matrix 
calculation plays an important role if the covariance matrix has large values resulting in 
correlation and large spread in the data. So we conclude that using the scatter matrix is a 
trade-off between the accuracy and computational burden. 
 
Section 2: 
 
Database Used for the Experiments: 
 
We have used Reuters-21758 database for text classification in our experiments (see 
http://www.cc.gatech.edu/~hskim/). Throughout the report, we assume that the document 
set is represented in an m x n (term x document) matrix. Each value in the matrix 
represents the normalized frequency of appearance of a term in a document. The basis for 
normalization is given in [1]. Data of only 10 classes is used for training and testing 
purposes as the computational complexity increased drastically with the number of 
classes. The number of terms used to identify the documents is 11941. We have used 712 
documents for training and 274 documents for testing purposes. Hence, the size of 
training database is 11941 x 712, and the size of testing database is 11941 x 274.  

http://www.cc.gatech.edu/%7Ehskim/


 
Dimension Reduction: Since we are using only 10 classes of data, 11941 dimensions are 
redundant for classification. Hence we perform dimension reduction on the original 
database.  Intuitively, since we have 10 classes, we have reduced the database to 10 
dimensions. The dimension reduction is performed using the ‘Centroid Algorithm’ [1]. 
For achieving good results, we first cluster the data using k-means clustering algorithm 
and then reduce the dimensions of the database using the centroid algorithm. This 
preserves the clusters after dimension reduction also. Throughout this report we use the 
term ‘Reduced Data’ to refer to the data obtained by performing dimension reduction. 
The dimensions of the reduced data used for training are 10 x 712 and those used for 
testing are 10 x 274.  
 
2a) Data Classification using Support Vector Machines: 
 
Support vector machines (SVMs) are a set of related supervised learning methods used 
for classification and regression. SVMs were originally developed to for two-group 
classification problems, but the same approach has been used for multiple classes [2, 3]. 
SVMs produce a quadratic programming (QP) problem. There exist different approaches 
to solve this problem namely all-together, one-against-one and one-against-all as 
mentioned in [2]. Hsu et al. presented a survey comparing these three techniques in [2], 
showing that ‘one-against-one’ technique produces better accuracy and requires less 
number of support vectors, and hence lower computation time. In our experiments we 
investigate this claim by classifying the reduced data using all the approaches and 
comparing the accuracy. We have implemented the three approaches on reduced data.  
 
Implementation: The MATLAB code is downloaded from http://asi.insa-
rouen.fr/enseignants/~arakotom/toolbox/index.html. This code is explained in Section 4. 
Table 2a-1 shows the results of our experiments for ‘one-against-one’ approach 
comparing the accuracies of full data and reduced data. It can be seen that polynomial 
kernel results in the highest accuracy. It can also be seen that linear kernel performs 
better than Gaussian kernel. One of the possible reasons for this is that a linear kernel 
performs better than Gaussian kernel for Gaussian distributed data. The data used by us is 
approximately Gaussian; hence the linear kernel outperforms the Gaussian kernel. Table 
2a-2 shows the comparison of accuracies obtained by various approaches. Note that these 
experiments are performed using the reduced data.  
 
 
  

Kernel Training 
Accuracy (%) 
of Full Data 

(11941 x 712) 

Testing 
Accuracy (%) 
of Full Data 

(11941 x 712) 

Training 
Accuracy (%) 

of Reduced 
Data (10 x 712) 

Testing 
Accuracy (%) 

of Reduced 
Data (10 x 712)

Linear (C = 1) 90.3 84.3 88.3 82.7 
Linear (C= 10) 92.5 85.1 90.1 83.3 
Poly (d = 2) 93.1 85.6 91.7 84.0 
Poly (d = 3) 91.4 85.3 89.0 84.9 



Poly (d = 4) 89.3 84.8 87.8 85.1 
RBF (γ = 0.5) 92.0 85.6 89.2 82.9 
RBF (γ = 1.0) 88.3 83.2 87.3 83.2 
Gaussian 85.6 82.1 84.2 79.3 
 
Table 2a-1.  Accuracy measurements using ‘one-against-one’ approach in SVMs 
comparing the performance of classifier using full data and reduced data. 
 

Kernel Scheme 1 Scheme 2 Scheme 3 
Linear (C = 1) 82.7 80.7 79.1 
Linear (C= 10) 83.3 83.3 81.2 
Poly (d = 2) 84.0 83.5 82.0 
Poly (d = 3) 84.9 84.2 83.3 
Poly (d = 4) 85.1 84.2 82.1 
RBF (γ = 0.5) 82.9 84.3 78.5 
RBF (γ = 1.0) 83.2 83.1 79.6 
Gaussian 79.3 78.7 77.5 

 
Table 2a-2. Comparison of testing accuracies for different approaches of solving QP in 
SVMs (Here scheme 1 is ‘one-against-one’, scheme 2 is ‘all-together’ and scheme 3 is 
‘one-against-all’). 
 
Observation: 
 
We observe that there is a slight loss of accuracy by reducing the dimensions of the data, 
however by saving huge amount of computational time. The execution time of SVMs for 
full data requires more than 3 hrs, while the classification using reduced data takes few 
seconds. Also, from Table 2a-2, it is apparent that ‘one-against-one’ approach performs 
better than the other two approaches (‘one-against-all’ and ‘all-together’). This might not 
be true in all the cases. To play safe, it is better to use ‘all-together’ approach, which 
creates the decision boundary by considering all the classes. From our experiments, we 
can also see that the accuracies obtained by ‘one-against-one’ and ‘all-together’ 
approaches are almost the same.  
 
 
2b) Data Classification using Artificial Neural Networks: 
 
Implementation: A MATLAB tool called ‘nntool’ is used for classifying the data using 
artificial neural networks. As can be seen from the Figure 2b-1, ‘nntool’ is a graphical 
user interface. The training data and the training class information can be either created 
or imported from the workspace.  Since the Reuter’s data is huge, we have imported the 
‘.mat’ files from the workspace. This tool facilitates us to select the type of neural 
network and the number of neurons.  



 
Fig 2b-1 Screen shot of ‘nntool’ 

 
We have investigated the accuracy of the neural network classification for the following 
types of networks: 
 

• Feed-forward back propagation 
• Radial Basis Function 
• Probabilistic  

 
Feed-forward back propagation: 
 
The number of neurons is the key selection parameter in this algorithm. Table 2b-1 
demonstrates the accuracy of the classifier for varying number of neurons. We have 
tested the reduced data for various numbers of neurons and observed that the accuracy 
increases with increasing number of neurons. Another interesting parameter is the 
execution time. This is measured from a profiler in MATLAB. As the number of neurons 
increases, the execution time increases, but the accuracy also increases. It is also 
observed that the full data has higher accuracy as compared to the reduced data, but 
training and testing full data has a tremendous computation time overhead. 
 
Number 
of 
neurons 

Training 
Accuracy 
(%) of 
full data 
(11941 X 
712) 

Testing 
Accuracy 
(%) of 
full data 
(11941 X 
712) 

Execution 
Time of 
full data 
(in hrs) 

Training 
Accuracy 
(%)Reduced 
Data (10 X 
712) 

Testing 
Accuracy 
(%)Reduced 
Data (10 X 
712) 

Execution 
Time of 
Reduced 
Data (in 
sec) 

5 91.8 71.6 2.75 81.4 65.9 0.8 
10 92.6 72.4 3.5 86.3 68.6 1.2 



20   > 5 hrs 91.2 69.1 1.8 
30    95.8 72.5 2.4 
40    96.4 75.3 3.2 
50    97.2 78.6 5.8 

 
Table 2b-1. Accuracy measurements using feed-forward back-propagation neural 
networks for varying number of neurons. (The empty boxes correspond to cases with 
very high execution time, these cases are omitted). 
 
Radial Basis Function: 
 
Literature survey says that neural networks with radial basis function achieve very high 
accuracy for most of the data sets [4]. So, it is important to compare other types of neural 
networks with that using radial basis function.   
 
     There is a critical implementation issue arising with the representation of the class 
information in this case. The class information has to be represented in the form of a 
vector (of size #classes x #documents) each column containing all zeros except a one in 
the row corresponding to the class it belongs to, instead of a row/column vector. This 
helps in perceiving and building the network with a better accuracy. The second and the 
third columns of Table 2b-3 show this difference in accuracies. The testing accuracy 
obtained for the first case is 17.8%, where as the accuracy for the second case is 86.5%.     
 
 Training Accuracy 

(%) 
Testing Accuracy (%) Execution Time 

Full Data 
(11941 X 712) 

87.8 83.7 3.25 hrs 

Reduced Data 
(10 X 712) 
(without 
converting the 
class info. to 
vectors) 

91.6 17.8 2.7 sec 

Reduced Data 
(10 X 712) (after 
converting the 
class info. to 
vectors) 

99.1 86.5 2.7 sec 

 
 Table 2b-3. Accuracy and execution time measurements for neural networks using 
radial basis function 
 
We use a MATLAB command called ‘ind2vec’ to convert the row vector into a vector of 
size (#classes x #documents) 
 
Probabilistic Neural Networks: 



 
Probabilistic neural networks are implemented by determining the density of the data 
using Parzen windows, and classifying them using the neural networks. Table 2b-2 shows 
the accuracy and execution time of the Reuter’s data. It cab be seen that huge amount of 
time (> 3hrs) can be saved by reducing the dimension, with only little loss in accuracy 
(1.5%). It is always not necessary that the dimension reduction causes loss of accuracy. 
Sometimes, the necessary information is lost; so the performance degrades. Sometimes, 
the dimension reduction can reduce the noise, thereby increasing the performance of the 
classifier. Since we are using cluster preserving technique, not much information is lost, 
so the accuracy does not vary significantly. 
 
 Training Accuracy (%) Testing Accuracy (%) Execution Time 
Full Data 
(11941 X 
712) 

87.19 85.84 3.12 hrs 

Reduced 
Data (10 X 
712) 

83.34 84.32 3.2 sec 

 
 Table 2b-2. Accuracy and execution time measurements for probabilistic neural 
networks 
 
Observation: 
 
By comparing the above three types of neural networks, we observed that neural 
networks implemented using radial basis functions have higher performance than other 
two types of networks for Reuter’s data. Also, dimension reduction does not result in loss 
of accuracy to a very great extent, but reduces the computation time by a great deal. 
 
2c) Comparing SVMs and Artificial Neural Networks: 
 
Theoretical: 
 

• Hidden neurons are the building blocks of the artificial neural networks where as 
support vectors are the building blocks of SVMs. 

• Artificial neural networks can be used for regression where as SVMs cannot be. 
 

 
Experimental: 
 
From the results of our experiments, we observe that: 

• For the reduced data, we observe that the execution time of SVMs is less than that 
of ANNs to achieve comparable accuracy, though SVMs solve the quadratic 
programming problem. The possible explanation is that, in ANNs, the number of 
parameters (weights + bias) to be optimized is large (for 50 neurons in hidden 
layer, it is approximately 1000). 



• In our experiments, the highest accuracy for SVMs is achieved by a polynomial 
kernel, where as the highest accuracy for ANNs is achieved by an RBF neuron.  

 
Section 3: 
 
3a) Data Classification Using Parzen Windows: 
 
Parzen window is used to estimate the density in a non-parametric fashion and build a 
classifier based on the densities of classes. The code downloaded from 
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=11880&obj
ectType=FILE is used for our experiments. The files used in our experiments are 
discussed in Section 4. This code determines the density of the sample data and uses this 
data to build a neural network classifier to classify the data. The parameter ‘spread’ 
determines the Parzen window (RBF spread in this code) size. The code uses a radial 
basis Parzen window (see http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-
20.html) and varied the spread for varying the window size. Gaussian Parzen windows 
can also be used and the variance can be varied to vary the window size. Table 3a shows 
the training and testing accuracies for the full and reduced data using various spreads. 
From the results, it is apparent that accuracy degrades when the window size is too small 
or too large. This is because, smaller windows do not generalize the distribution, where 
as larger windows result in over-generalizing, thus degrading the accuracy. The 
underlined accuracies are the best accuracies obtained with the given parameters.  
 

Spread Full Data 
Training 

Accuracy (%) 
(11941 x 712) 

Full Data 
Testing 

Accuracy (%) 
(11941 x 712) 

Reduced Data 
Training 

Accuracy (%) 
(10 x 712) 

Reduced Data 
Testing 

Accuracy (%) 
(10 x 712) 

0 3.2 8.7 0 7.3 
0.05 97.3 78.9 94.5 76.7 
0.1 91.2 77.3 89.33 77.37
0.15 87.9 75.2 85.39 74.45 
0.2 85.6 74.3 82.87 70.07 
0.5 61.2 52.1 58.15 45.99 
1.0 41.0 32.4 35.96 29.2 

 
Table 3a Comparison of accuracies for full and reduced data using various spreads of 
Parzen window. 
 
Note: It is observed that the MATLAB function ‘newpnn’ achieves the same results. 
This function also implements the density estimation and building a neural network 
classifier. 
 
3b,c) Data Classification Using KNN: 
 
Brief introduction to the k-nearest neighbor algorithm 

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=11880&objectType=FILE
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=11880&objectType=FILE
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-20.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part2/section-20.html


 
The k-nearest neighbor algorithm is a simple machine learning algorithm. An object is 
classified by a majority vote of its neighbors, with the object being assigned to the class 
most common amongst its k- nearest neighbors. k is a positive integer, typically small. If 
k = 1, then the object is simply assigned to the class of its nearest neighbor (called 
nearest neighbor algorithm). In binary (two class) classification problems, it is helpful 
to choose k to be an odd number as this avoids tied votes. Table 3bc shows the 
performance of the classifiers for varying number of neighbors. 
 
 
# Neighbors Type Euclidean Manhattan Cosine Correlation 

Nearest 73.7 74.8 74.8 74.1 
Random 73.7 74.8 74.8 74.1 

 
1 

Consensus 73.7 74.8 74.8 74.1 
Nearest 73.36 75.55 76.3 76.64
Random 74.1 75.2 77 75.91 

 
5 
 Consensus 51.8 52.2 55.1 53.3 

Nearest 74.45 74.81 75.18 75.55 
Random 74.1 74.45 74.82 75.18 

 
15 
 Consensus 33.2 33.9 40.14 40.15 

Nearest 75.91 74.82 75.91 76.64 
Random 76.3 74.82 75.91 76.3 

 
30 
 Consensus 20.07 18.97 24.82 24.82 

Nearest 75.55 76.3 73.732 72.99 
Random 75.55 75.18 73.72 73 

 
45 
 Consensus 10.95 8.03 17.52 18.25 

Nearest 74.81 75.18 72.99 73.35 
Random 74.45 74.45 73.36 73 

 
60 
 Consensus 7.66 7.29 12.77 12.77 

Nearest 73.36 71.17 70.44 68.98 
Random 73.36 71.17 70.07 68.98 

 
100 

 Consensus 0 0 3.28 0.73 
Nearest 68.25 67.52 68.61 60.95 
Random 67.52 66.79 67.88 60.95 

 
150 

 Consensus 0 0 0 0 
 
Table 3bc. Accuracy results obtained by varying parameters namely, the number of 
neighbors, distance metric and decision rule. 
 
Procedure 
 
In the case of testing k-nearest neighbor algorithm, we have performed experiments 
changing k (number of nearest neighbors), distance type (Euclidean, Manhattan, Cosine 
and Correlation) and rule to classify (Nearest, Random and Consensus). We have used 
Matlab’s “knnclassify” to perform our experiments. 
 



Observations 
 
1. For selecting k 
 
We observe that increasing k doesn’t always increase the accuracy. For the nearest 
neighbor case (k=1) we observe that though the classifier accuracy is not optimal, it is 
comparable with the highest classification accuracy. Optimal k value (and the 
classification accuracy) depends on factors like the number of classes under 
consideration, amount of data and its quality (number of data points/class and features 
representing the class density). In our experiment with 10 classes and 10 features 
(reduced space), we observe that k=30 is the optimal neighbor number. By increasing k 
(k>30), we found that the classification accuracy has decreased. This could be attributed 
to losing of (distinct) boundaries between classes. Though increasing k reduces the effect 
of noise, it could also affect the class boundary distinction resulting in reduced classifier 
accuracy. 
 
2. Distance Type 
 
The following distance metrics are used for comparison: 
 

• Euclidean: second order norm between two points 
• Manhattan: Sum of absolute differences (also called city block) 
• Cosine: One minus the cosine of the angle included between points (treated as 

vectors) 
• Correlation: One minus the sample correlation between points (treated as vectors) 
 

We observe that the type of distance used has little effect on classification accuracy. We 
implemented the k-nearest neighbor algorithm on dimensionally reduced data. As we 
know dimensional reduction reduces the correlation between features. We attribute the 
dimensional reduction to be the reason for unaffected classification accuracy with 
distance type. 
 
3. Classification Rule 
 
The following classification rules are used: 
 

• Nearest: Majority rule with nearest point tie-break 
• Random: Majority rule with random point tie-break 
• Consensus: points where the all the k nearest neighbors are not from the same 

class, are not assigned to any class. 
 

We observe that ‘Consensus’ has the least classifier accuracy. This is because 
‘Consensus’ rule doesn’t associate a data point to any class in case of a tie. We also 
observe that the consensus classifier accuracy has reduced with increase of k value. This 
is expected if the data is equally represented from all the classes (Data points/class).The 
‘nearest’ and ‘random’ classification rules result in similar accuracies.  



 
3d) Comparing Parzen windows, NN and kNN: 
 
As a rule of thumb, nonparametric density estimation usually requires a large amount of 
training data to provide a good estimate of the true distribution of a data set. However, 
the most important factor that is often overlooked is not the amount of training data, but 
rather how well the training set represents the actual distribution of the data. Due to the 
accuracy of our classifiers, it appears that the features obtained after the dimension 
reduction are highly representative of the overall data distribution. It is very difficult to 
differentiate the three techniques, because the performances vary depending on the 
parameters and applications. We observe the following differences for our text 
classification data: 
 

• The classifier performance is determined by the window size in the case of Parzen 
windows, where as the number of neighbors and the distance metric in the case of 
kNN. For NN, however the number of neighbors is fixed, and the only parameter 
that can be varied is the distance metric. 

 
• From our results, we observe that the classifier accuracy is very sensitive to 

window size (or RBF spread) in case of Parzen windows, where as the number of 
neighbors and distance metric do not vary the accuracy drastically.  For kNN and 
NN, the consensus method results in very low accuracy. 

 
• The classification rule does not change the performance of the classifier in the 

case of nearest neighbors because, we consider only one neighbor, where as for 
kNN (k>1), the majority classification rule results in high accuracy. 
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Section 4: 
 
MATLAB Code: 
 
The following code implements dimension reduction: 
 
% code for clustering the data 
% k-means clustering is implmented as its (see wikipedia) easy and k 
can be 
% mentioned before the start of clustering. 
 
%X is the data to be clustered 
% In our case k = 10 classes 
 
clc; 
clear; 
 
 
%X should be of the form documents * termmatrix for kmeans clustering 
%traindata is of the reqd form. 
% I am testing on 712 documents. So its 712 * 11941 matrix 
 
X = dlmread('traindata_1.txt'); 
 
 
%the loop below builds class information file. Each row is a document 
and the value of the class info file tells us which class it belongs to 
 
classData = dlmread('classdata_train.txt'); 
k=1; 
classInfo = zeros(max(classData),1); 
for i=1:1:length(classData) 
    for j=k:1:classData(i) 
        classInfo(j,1)=i; 
    end 
    k=classData(i)+1; 
end 
 
dlmwrite('classInfo.txt',classInfo'); 
 
 
%C is the cluster centroid matrix 
%if X is n*m then C is k*m where k is number of clusters 
% in our case n is the total number of documents (training) and k will 
be 
% reduced document clusters 
 
 
k=10; 
 
 
%[CI C] = kmeans(X,k); 
 
[CI C] = kmeans(X,k,'emptyaction','singleton'); 
 



%to get columns as clusters, we take transpose 
 
C=C'; 
 
dlmwrite('centroid_indeces.txt',CI); 
dlmwrite('centroid.txt',C); 
  
 
 
 % below we will build a cluster class matrix for the clustered data 
 
cC = zeros(k,length(classData)); 
 
for i=1:1:length(classInfo) 
    cC(CI(i,1),classInfo(i,1))=    cC(CI(i,1),classInfo(i,1)) +1; 
end 
 
dlmwrite('cC.txt',cC); 
 
 
[Mcc Icc] = max(cC,[],2); 
dlmwrite('cCIndex.txt',Icc); 
 
%Icc1 tells us what clusters belong to what class 
 
 
%For dimensionality reduction case Training is done on the clustered 
data. 
%so we will do C = C' above 
 
%Dimensionality Reduction methods 
 
%1. Centroid Algorithm for Dimension Reduction 
 
 
s1 = size(X); 
 
%for all rows of X i.e for all documents 
 
for i=1:1:s1(1,1) 
redA1(:,i) = lsqnonneg(C,X(i,:)'); 
end 
 
%write the redA1 
 
dlmwrite('redA1.txt',redA1); 
 
%X has dimension termmatrix * docs (11914 * 714) is reduced to (redA) 
with 
%10 * 714 
 
 
% have to perform clustering on the reduced data!!!! We have to use the 
% same number of clusters as in the beginning. It is 10 in our case. 
 
redA1=redA1'; 
redA2=redA2'; 



 
k=10; 
 
[X1 C1] = kmeans(redA1,k,'emptyaction','singleton'); 
 
C1 = C1'; 
 
 
%in the case of training with dim. reduced clustered data, we have to 
use C1 
 
%we have to build a 10 * 10 matrix for finding the class that each 
cluster 
%will belong to 
 
 
%k is the no of clusters 
k=10; 
 
clustClass1 = zeros(k,length(classData)); 
clustClass2 = zeros(k,length(classData)); 
 
for i=1:1:length(classInfo) 
    clustClass1(X1(i,1),classInfo(i,1))= 
clustClass1(X1(i,1),classInfo(i,1)) +1; 
end 
 
dlmwrite('clustClass1.txt',clustClass1); 
 
[Mcc1 Icc1] = max(clustClass1,[],2); 
dlmwrite('ccIndex1.txt',Icc1); 
 
%Icc1 tells us what clusters belong to what class 
 
for i=1:1:length(classInfo) 
    clustClass2(X2(i,1),classInfo(i,1))=    
clustClass2(X2(i,1),classInfo(i,1)) +1; 
end 
 
B1 = dlmread('testdata_1.txt'); 
 
s1=size(B1); 
for i=1:1:s1(1,1) 
redB1(:,i) = lsqnonneg(C,B1(i,:)'); 
end 
 
dlmwrite('test_data_centroid.txt',redB1); 
 
 
Prob 1) 
 

• Matlab code for performing "Fisher linear discriminant" analysis was 
downloaded from http://mit.edu/~linuo/www/files/LDAplane.m 

http://mit.edu/%7Elinuo/www/files/LDAplane.m


• This code takes the training data, its labels and test data as its arguments and 
returns the projected training and test data, projection plane details and the 
classification results. 

 
MATLAB code: 
 
function [w, f, b, fTrain, fTest] = LDAplane (data, label, test) 
 
% Estimate the vector w normal to the linear discriminant hyperplane 
% data is the matrix: each row is one data point, each column is one 
% feature (dimension) of the data 
% 
% Note: currently, this program supports muliti classification, label 
has 
% to be adjcent integer numbers (e.g. [0 1 2 ...k] for k classes) 
 
 
 
% sorting matrix 
w=[]; 
f=[]; 
b=[]; 
fTrain=[]; 
fTest=[]; 
 
data=data'; 
featNum=size(data,1); 
dataNum=size(data,2); 
 
for Nclass=min(label):max(label) 
 
    covB=[]; 
    covW=[]; 
    mui=[]; 
    classLabel=(label==Nclass); 
 
    for k=0:1 
        % Load digits 
        x=data(:,find(classLabel==k)); 
        eval(['x',num2str(k),'=x;']); 
 
        %mean 
        mui(:,end+1)=mean(x,2); 
    end 
 
    mu=mean(mui,2); 
 
    %covariance 
    covW=0; 
    covB=0; 
    for k=0:1 
        eval(['x=x',num2str(k),';']); 
        for n=1:size(x,2) 
            covW=covW+(x(:,n)-mui(:,k+1))*(x(:,n)-mui(:,k+1))'; 
        end 



    end 
    covW=covW/dataNum; 
 
    %normal vector to Hyperplane 
    classW=-inv(covW)*diff(mui,1,2); 
 
    %offset 
    prior=0; 
    %prior=log(size(x0,2)/size(x1,2)); 
    classB=1/2*sum(mui,2)'*inv(covW)*diff(mui,1,2)+prior; 
 
    %projecting and offseting (this computes vote) 
    fTestClass=-(test*classW+classB); 
    fTrainClass=-(data'*classW+classB); 
     
    %offseting 
    classF=fTestClass;     
     
     
    %Output into sorting matrix 
    w(:,end+1)=classW; 
    f(:,end+1)=classF; 
    b(:,end+1)=classB; 
    fTrain(:,end+1)=fTrainClass; 
    fTest(:,end+1)=fTestClass; 
 
 
 
end 
 
 
% Classify by taking votes 
[dummy f]=max(f,[],2); 
f=f+min(label)-1; 
 
 
return 

 
 
Prob 2) 
 

a) The code for implementing support vector machines is downloaded from 
http://asi.insa-rouen.fr/enseignants/~arakotom/toolbox/index.html . We used the 
following functions for our experiments: 

 
• svmmulticlass.m: function to determine the support vectors, given the 

training data and the class information, using ‘all-together’ approach 
• svmmulticlassoneagainstone.m:  function to determine the support vectors 

using ‘one-against-one’ approach, given the training data and the class 
information.  

• svmmulticlassoneagainstall.m: function to determine the support vectors 
using ‘one-against-all’ approach, given the training data and the class 
information. 



• svmkernel.m: function to design the svm kernels used for training and 
classifying the data. 

• svmmultival.m: function used to classify the data from the support vectors 
obtained from training. 

 
b) Used ‘nntool’ and varied parameters (See the explanation in Section 2b for more 

detail) 
 
svmmulticlass.m: 
 
function 
[xsup,w,b,nbsv,pos,alpha]=svmmulticlass(x,y,nbclass,C,epsilon,kernel,ke
rneloption,verbose, alphainit) 
 
 
% USAGE  
%[xsup,w,b,nbsv,pos,alpha]=svmmulticlass(x,y,nbclas,C,epsilon,kernel,ke
rneloption,verbose, alphainit) 
% 
% Support vector machine for multiclass CLASSIFICATION 
% This routine classify the training set with a support vector machine 
% using quadratic programming algorithm (active constraints method) 
% 
% INPUT 
% 
% Training set 
%      x    : input data  
%      y    : output data 
% parameters 
%  c  : Bound on the lagrangian multipliers      
%  lambda  : Conditioning parameter for QP method 
%  kernel  : kernel  type. classical kernel are 
% 
%  Name   parameters 
%  'poly'  polynomial degree 
%  'gaussian' gaussian standard deviation 
% 
%  for more details see svmkernel 
%  
%  kerneloption : parameters of kernel 
% 
%  for more details see svmkernel 
% 
%   verbose : display outputs (default value is 0: no display) 
% 
%       alphainit : initialization vector of QP problem 
% 
% OUTPUT 
% 
% xsup coordinates of the Support Vector 
% w      weight 
% b  bias 
% pos    position of Support Vector 
% alpha  Lagragian multiplier 



% 
% 
% see also svmreg, svmkernel, svmval 
 
 
if nargin< 9 
    alphainit=[]; 
end; 
 
 
if nargin < 8 
    verbose = 1; 
end 
 
if nargin < 7 
    kerneloption = 5; 
end 
 
if nargin < 6 
    kernel = 'gaussian'; 
end 
 
if nargin < 5 
    epsilon = 0.0000001; 
end 
 
if nargin < 4 
    C = 10000000; 
end 
 
verbose 
%------------------------------------------------------ 
% initialisation 
%------------------------------------------------------- 
[y,ind]=sort(y); 
x=x(ind,:); 
 
yextended=repmat(y,nbclass,1); 
xextended=repmat(x,nbclass,1); 
 
 
ell=size(x,1); 
n=sum(y==1); 
 
if size(C,1)==1 
    C=C*ones(size(y)); 
end; 
 
%------------------------------------------------------ 
% construction des matrices associé au pb QP 
%------------------------------------------------------- 
 
 
MatAux=zeros(ell,ell); 
MatAuxQ3=zeros(ell,ell); 
Q21=zeros(ell*nbclass,ell*nbclass); 
Q22=zeros(ell*nbclass,ell*nbclass); 



debut=1; 
debutQ3=1; 
for s=1:nbclass 
    indclass=find(y==s); 
    ellinclass=length(indclass); 
    MatAux(debut:debut+ellinclass-1,debut:debut+ellinclass-
1)=svmkernel(x(indclass,:),kernel,kerneloption); 
    debut=debut+ellinclass; 
     
    MatAuxQ3(debutQ3:debutQ3+ell-1,debutQ3:debutQ3+ell-
1)=svmkernel(x,kernel,kerneloption); 
    debutQ3=debutQ3+ell;    
    for j=1:ell 
        Kij=svmkernel(x,kernel,kerneloption,x(j,:)); 
        yj=y(j); 
        Q21( (yj-1)*ell +1: yj *ell, (s-1)*ell + j )= -Kij;  
         
        ind=find(yextended==s); 
        Q22(ind,(s-1)*ell + j )= - 
svmkernel(xextended(ind,:),kernel,kerneloption,x(j,:)); 
         
    end; 
end; 
 
Q1=repmat(MatAux,nbclass,nbclass); 
Q3=MatAuxQ3; 
Q2=Q21+Q22; 
 
Q=Q1+Q2+Q3; 
 
 
%------------------------------------------------------ 
% Les contraintes 
%------------------------------------------------------- 
 
 
 
yii=[]; 
Am=zeros(nbclass, size(yextended,1)); 
Am1=zeros(nbclass, size(yextended,1)); 
for s=1:nbclass 
    ind=(s-1)*ell+1: s*ell; 
    Am(s,ind)=ones(1,length(ind)); 
    ind1=find(yextended==s); 
    Am1(s,ind1)=ones(1,length(ind1)); 
    yii= [yii;y==s]; 
end; 
 
A=Am-Am1; 
 
c=2*ones(size(yextended)); 
b=zeros(size(A,1),1); 
Cvect=repmat(C,3,1); 
unused=find(yii==1); 
Cvect(unused)=0.00000*ones(length(unused),1); 
 
 



 
 
xinit=zeros(size(Cvect)); 
xinit(n+1)=Cvect(n+1)/2; 
[xnew, lambda, pos] = monqp(Q,c,A',b,Cvect,epsilon,verbose,x,[],xinit); 
 
 
b=-lambda; 
alpha=zeros(size(Cvect)); 
alpha(pos)=xnew; 
w=zeros(size(xextended,1),1); 
xsup=[]; 
 
 
for s=1:nbclass 
    for i=1:ell 
        if y(i)==s 
            for m=1:nbclass 
                w((s-1)*ell+i)=w((s-1)*ell+i)+alpha((m-1)*ell+i); 
            end; 
        end; 
        w((s-1)*ell+i)=w((s-1)*ell+i)-alpha((s-1)*ell+i); 
    end; 
end; 
 
waux=[]; 
for s=1:nbclass 
    ind=find(w((s-1)*ell+1:(s-1)*ell+ell)~=0); 
    waux=[waux;w( (s-1)*ell+ ind)]; 
    nbsv(s)=length(ind); 
    xsup=[xsup; x(ind,:)];  
end; 
w=waux; 
 
svmmulticlassoneagainstall.m: 
 
function 
[xsup,w,b,nbsv,pos,obj]=svmmulticlassoneagainstall(x,y,nbclass,c,epsilo
n,kernel,kerneloption,verbose,warmstart); 
 
% USAGE 
[xsup,w,b,nbsv,pos,obj]=svmmulticlass(x,y,nbclass,c,epsilon,kernel,kern
eloption,verbose); 
% 
% 
% SVM Multi Classes Classification One against Others algorithm 
% 
% y is the target vector which contains integer from 1 to nbclass. 
%  
% This subroutine use the svmclass function 
%  
% the differences lies in the output nbsv which is a vector 
% containing the number of support vector for each machine 
% learning. 
% For xsup, w, b, the output of each ML are concatenated 
% in line. 



%  
%  
% See svmclass, svmmultival 
% 
 
xsup=[];  % 3D matrices can not be used as numebr of SV changes 
w=[]; 
b=[]; 
pos=[]; 
span=1; 
qpsize=1000; 
nbsv=zeros(1,nbclass); 
nbsuppvector=zeros(1,nbclass); 
obj=0; 
 
for i=1:nbclass 
     
    yone=(y==i)+(y~=i)*-1; 
    if exist('warmstart') & isfield(warmstart,'nbsv'); 
        nbsvinit=cumsum([0 warmstart.nbsv]); 
        alphainit=zeros(size(yone)); 
        alphainit(warmstart.pos(nbsvinit(i)+1:nbsvinit(i+1)))= 
abs(warmstart.alpsup(nbsvinit(i)+1:nbsvinit(i+1))); 
    else 
        alphainit=[]; 
    end; 
    if size(yone,1)>4000 
        
[xsupaux,waux,baux,posaux]=svmclassls(x,yone,c,epsilon,kernel,kernelopt
ion,verbose,span,qpsize,alphainit); 
    else 
        
[xsupaux,waux,baux,posaux,timeaux,alphaaux,objaux]=svmclass(x,yone,c,ep
silon,kernel,kerneloption,verbose,span,alphainit); 
    end; 
     
    nbsv(i)=length(posaux); 
    xsup=[xsup;xsupaux]; 
    w=[w;waux]; 
    b=[b;baux]; 
    pos=[pos;posaux]; 
    obj=obj+objaux; 
end; 
 
 
 
svmmulticlassoneagainstone.m: 
 
function 
[xsup,w,b,nbsv,classifier,pos,obj]=svmmulticlassoneagainstone(x,y,nbcla
ss,c,epsilon,kernel,kerneloption,verbose,warmstart); 
%[xsup,w,b,nbsv,classifier,posSigma]=svmmulticlassoneagainstone(x,y,nbc
lass,c,epsilon,kernel,kerneloption,verbose); 
% 
% 
% 



% SVM Multi Classes Classification One against Others algorithm 
% 
% y is the target vector which contains integer from 1 to nbclass. 
% 
% This subroutine use the svmclass function 
% 
% the differences lies in the output nbsv which is a vector 
% containing the number of support vector for each machine 
% learning. 
% For xsup, w, b, the output of each ML are concatenated 
% in line. 
% 
% classifier gives which class against which one 
% 
 
if nargin < 8 
    verbose=0; 
end; 
 
 
xsup=[];  % 3D matrices can not be used as numebr of SV changes 
w=[]; 
b=[]; 
pos=[]; 
SigmaOut=[]; 
span=1; 
classifier=[]; 
nbsv=zeros(1,nbclass); 
nbsuppvector=zeros(1,nbclass); 
k=1; 
if isempty(x) & strcmp(kernel,'numerical') & 
isfield(kerneloption,'matrix') 
    Kaux=kerneloption.matrix; 
    kernelparam=1; 
    xapp=[]; 
else 
    kernelparam=0; 
end; 
obj=0; 
for i=1:nbclass-1 
    for j=i+1:nbclass 
        indi=find(y==i); 
        indj=find(y==j); 
        yone=[ones(length(indi),1);-ones(length(indj),1)]; 
        if ~isempty(x) 
            xapp=[x(indi,:); x(indj,:)]; 
        end; 
        if exist('warmstart') & isfield(warmstart,'nbsv'); 
            nbsvinit=cumsum([0 warmstart.nbsv]); 
            alphainit=zeros(size(yone)); 
                    aux=[indi;indj]; 
            
posaux=find(ismember(aux,warmstart.pos(nbsvinit(k)+1:nbsvinit(k+1)))); 
            alphainit(posaux)= 
abs(warmstart.alpsup(nbsvinit(k)+1:nbsvinit(k+1))); 
        else 
            alphainit=[]; 



        end; 
        if kernelparam==1; 
            if size(indi,1)==1 && size(indi,2)>1 
                kerneloption.matrix=Kaux([indi indj],[indi indj]); 
            else 
                kerneloption.matrix=Kaux([indi  ;indj],[indi; indj]); 
            end 
        end; 
 
        
[xsupaux,waux,baux,posaux,timeaux,alphaaux,objaux]=svmclass(xapp,yone,c
,epsilon,kernel,kerneloption,verbose,span,alphainit); 
 
        [n1,n2]=size(waux); 
        nbsv(k)=n1; 
        classifier(k,:)=[i j]; 
        xsup=[xsup;xsupaux]; 
        w=[w;waux]; 
        b=[b;baux]; 
        aux=[indi;indj]; 
        pos=[pos;aux(posaux)]; 
        obj=obj+objaux; 
        k=k+1; 
    end; 
end; 
 
svmkernel.m: 
 
function 
[K,option]=svmkernel(x,kernel,kerneloption,xsup,framematrix,vector,dual
); 
 
% Usage  K=svkernel(x,kernel,kerneloption,xsup,frame,vector,dual); 
% 
% Returns the scalar product of the vectors x by using the 
% mapping defined by the kernel function or x and xsup 
% if the matrix xsup is defined 
% 
% Input 
%  
% x  :input vectors 
% kernel  : kernel function 
%  Type        Function 
    Option 
%  Polynomial      'poly'  
   Degree (<x,xsup>+1)^d 
%  Homogeneous polynomial  'polyhomog'   
 Degree <x,xsup>^d  
%  Gaussian       'gaussian' 
   Bandwidth 
%  Heavy Tailed RBF    'htrbf'   
  [a,b]   %see Chappelle 1999  
%  Mexican 1D Wavelet    'wavelet' 
%  Frame kernel     'frame'  
   'sin','numerical'...  
% 



%  kerneloption : scalar or vector containing the option for the 
kernel 
% 'gaussian' : scalar gamma is identical for all coordinates 
%              otherwise is a vector of length equal to the number of  
%              coordinate 
%  
% 
% 'poly' : kerneloption is a scalar given the degree of the polynomial 
%          or is a vector which first element is the degree of the 
polynomial 
%           and other elements gives the bandwidth of each dimension. 
%          thus the vector is of size n+1 where n is the dimension of 
the problem. 
% 
% 
% xsup  : support vector 
% 
% ----- 1D Frame Kernel --------------------------  
% 
%  framematrix  frame elements for frame kernel 
%  vector       sampling position of frame elements 
% dual     dual frame 
%  frame,vector and dual are respectively the matrices and the vector 
where the frame  
%  elements have been processed. these parameters are used only in case 
% 
% 
% see also svmreg,svmclass,svmval, kernelwavelet,kernelframe 
 
if nargin < 6 
    vector=[]; 
    dual=[]; 
end; 
if nargin <5 
    frame=[]; 
end; 
 
if nargin<4 
    xsup=x; 
end; 
if nargin<3 
    kerneloption=1; 
end; 
if nargin<2 
    kernel='gaussian'; 
end; 
if isempty(xsup) 
    xsup=x; 
end; 
[n1 n2]=size(x); 
[n n3]=size(xsup); 
ps  =  zeros(n1,n);   % produit scalaire 
switch lower(kernel) 
case 'poly' 
     
    [nk,nk2]=size(kerneloption);    
    if nk>nk2 



        kerneloption=kerneloption'; 
        nk2=nk; 
    end; 
    if nk2==1 
        degree=kerneloption; 
        var=ones(1,n2); 
         
    elseif nk2 ==2 
        degree=kerneloption(1); 
        var=ones(1,n2)*kerneloption(2); 
         
    elseif nk2== n2+1 
        degree=kerneloption(1); 
        var=kerneloption(2:n2+1); 
         
    elseif nk2 ==n2+2 
        degree=kerneloption(1); 
        var=kerneloption(2:n2+1); 
    end; 
 
    if nk2==1 
        aux=1; 
    else 
        aux=repmat(var,n,1); 
    end; 
   
    ps= x *(xsup.*aux.^2)'; 
 
    if degree > 1 
        K =(ps+1).^degree; 
    else 
        K=ps; 
    end; 
case 'polyhomog' 
     
    [nk,nk2]=size(kerneloption);    
    if nk>nk2 
        kerneloption=kerneloption'; 
        nk2=nk; 
    end; 
    if nk2==1 
        degree=kerneloption; 
        var=ones(1,n2); 
    else 
        if nk2 ~=n2+1 
            degree=kerneloption(1); 
            var=ones(1,n2)*kerneloption(2); 
        else 
            degree=kerneloption(1); 
            var=kerneloption(2:nk2); 
        end; 
    end; 
     
     
    aux=repmat(var,n,1); 
    ps= x *(xsup.*aux.^2)'; 
    K =(ps).^degree; 



     
     
case 'gaussian' 
    [nk,nk2]=size(kerneloption); 
    if nk ~=nk2 
        if nk>nk2 
            kerneloption=kerneloption'; 
        end; 
    else 
        kerneloption=ones(1,n2)*kerneloption; 
    end; 
     
    if length(kerneloption)~=n2 & length(kerneloption)~=n2+1  
        error('Number of kerneloption is not compatible with data...'); 
    end; 
     
     
    metric = diag(1./kerneloption.^2); 
    ps = x*metric*xsup';  
    [nps,pps]=size(ps); 
    normx = sum(x.^2*metric,2); 
    normxsup = sum(xsup.^2*metric,2); 
    ps = -2*ps + repmat(normx,1,pps) + repmat(normxsup',nps,1) ;  
     
     
    K = exp(-ps/2); 
     
case 'htrbf'    % heavy tailed RBF  %see Chappelle Paper% 
    b=kerneloption(2); 
    a=kerneloption(1); 
    for i=1:n 
        ps(:,i) = sum( abs((x.^a - ones(n1,1)*xsup(i,:).^a)).^b   ,2); 
    end; 
     
     
    K = exp(-ps); 
     
case 'gaussianslow'    % 
    %b=kerneloption(2); 
    %a=kerneloption(1); 
    for i=1:n 
        ps(:,i) = sum( abs((x - ones(n1,1)*xsup(i,:))).^2 
,2)./kerneloption.^2/2; 
    end; 
     
     
    K = exp(-ps); 
case 'multiquadric' 
    metric = diag(1./kerneloption); 
    ps = x*metric*xsup';  
    [nps,pps]=size(ps); 
    normx = sum(x.^2*metric,2); 
    normxsup = sum(xsup.^2*metric,2); 
    ps = -2*ps + repmat(normx,1,pps) + repmat(normxsup',nps,1) ;  
    K=sqrt(ps + 0.1); 
case 'wavelet' 
    K=kernelwavelet(x,kerneloption,xsup);      



case 'frame' 
    K=kernelframe(x,kerneloption,xsup,framematrix,vector,dual); 
case 'wavelet2d' 
    K=wav2dkernelint(x,xsup,kerneloption); 
case 'radialwavelet2d' 
    K=radialwavkernel(x,xsup);     
case 'tensorwavkernel' 
    [K,option]=tensorwavkernel(x,xsup,kerneloption);   
 
case 'numerical' 
    K=kerneloption.matrix; 
case 'polymetric' 
    K=x*kerneloption.metric*xsup'; 
     
case 'jcb' 
    K=x*xsup'; 
     
end; 
 
 
svmmultival.m: 
 
function 
[ypred,maxi,ypredMat]=svmmultival(x,xsup,w,b,nbsv,kernel,kerneloption) 
 
% USAGE ypred=svmmultival(x,xsup,w,b,nbsv,kernel,kerneloption) 
%  
% Process the class of a new point x of a one-against-all  
% or a all data at once MultiClass SVM 
%  
% This function should be used in conjuction with the output of 
% svmmulticlass. 
% 
% 
% See also svmmulticlass, svmval 
% 
 
[n1,n2]=size(x); 
nbclass=length(nbsv); 
y=zeros(n1,nbclass); 
nbsv=[0 nbsv]; 
aux=cumsum(nbsv); 
for i=1:nbclass 
    if ~isempty(xsup) 
         xsupaux=xsup(aux(i)+1:aux(i)+nbsv(i+1),:); 
        waux=w(aux(i)+1:aux(i)+nbsv(i+1)); 
        baux=b(i); 
        ypred(:,i)= svmval(x,xsupaux,waux,baux,kernel,kerneloption); 
    else 
      if isempty(x)  %  Kernel matrix is given as a parameter  
        waux=w(aux(i)+1:aux(i)+nbsv(i+1)); 
        baux=b(i); 
        kernel='numerical'; 
        xsupaux=[]; 
        pos=aux(i)+1:aux(i)+nbsv(i+1); 
        kerneloption2.matrix=kerneloption.matrix(:,pos); 



        ypred(:,i)= svmval(x,xsupaux,waux,baux,kernel,kerneloption2); 
      end; 
    end; 
    
end; 
ypredMat=ypred; 
[maxi,ypred]=max(ypred'); 
maxi=maxi'; 
ypred=ypred'; 
 
 
Prob 3) 

a) The MATLAB code is developed based on the code taken from 
http://www.mathworks.com/matlabcentral/ 
fileexchange/loadFile.do?objectId=11880&objectType=FILE . The following files are 
used for the classification: 

• parzenPNNlearn.m – builds the neural network parameters from the densities of 
training data estimated by Parzen windows. 

• parzenPNNclassify.m – classifies the test data based on the network parameters 
determined by the parzenPNNlearn.m 

Alternately, the MATLAB function ‘newpnn’ can be used. 

b, c) The MATLAB function ‘knnclassify’ is used to classify the data using k-Nearest 
Neighbors density estimation.  k = 1 corresponds the ‘Nearest Neighbor’ classification.  

parzenPNNlearn.m: 

function net = parzenPNNlearn(samples,classification, spread) 
% PARZENPNNLEARN  Creates a Parzen probabilistic neural network 
% 
%  This funcion generates a Parzen PNN (Probabilistic Neural Network) 
from 
% a list of classified samples. The samples are given in the format of 
a 
% matrix containing a single sample per row. The returned structure is 
a 
% Parzen PNN and must be used with the parzen PNN manipulation 
functions. 
% 
%  Parameters 
%  ---------- 
% IN: 
%  samples          = The set of samples. 
%  classification   = The classification of the samples. 
%  spread           = Radial basis spread of the Parzen window 
%                     autocentering or not, whilst a vector can define 
the 
%                     selected center. (def=true) 
% OUT: 

http://www.mathworks.com/matlabcentral/%20fileexchange/loadFile.do?objectId=11880&objectType=FILE
http://www.mathworks.com/matlabcentral/%20fileexchange/loadFile.do?objectId=11880&objectType=FILE


%  net              = The parzen PNN. 
% 
%  Pre 
%  --- 
% -  The input samples must be passed as a row-samples matrix. 
% -  The classification vector must have the same number of elements as 
the 
%   number of columns of the samples matrix. 
% 
%  Post 
%  ---- 
% -  The returned structure is a valid parzenPNN structure. 
% 
%  Examples 
%  -------- 
% % A training set for the class 'a' and 'b': 
% img=ones(100); 
% f=figure; imshow(img); sa=getpoints; close(f); 
% f=figure; imshow(img); sb=getpoints; close(f); 
% % The samples matrix: 
% S = [sa,sb]; 
% % The classification vector: 
% C = [repmat('a',[1,size(sa,2)]),repmat('b',[1,size(sb,2)])]; 
% % Generating the network: 
% net = parzenPNNlearn(S,C), 
% 
%  See also 
%  -------- 
% parzenPNNclassify, parzenPNNimprove 
 
% Check params: 
if nargin<2 || size(samples,2)~=numel(classification) 
    error('A samples matrix and a classification vector must be 
provided!'); 
end 
if nargin<3  
    center=true;  
end 
 
% Generating the center: 
if isa(center,'logical') 
    % Generating automatically the center: 
    if center 
        center = mean(samples,2); 
    else 
        center = zeros(size(samples,1),1); 
    end 
else 
    % Checking the given mean: 
    if ~vectCheckShape(center,[size(samples,1),1]) 
        error('The specified center is not a point of the samples space 
(wrong dimensionality)!'); 
    end 
end 
 
% Counting the classes and generating the classes vector: 
classes = unique(classification); 



 
% Centering the data: 
samples = samples - repmat(center,[1,size(samples,2)]); 
 
% Obtaining the normalization factors: 
normvals = sqrt(sum(samples.^2)); 
 
% Normalizing: 
samples = samples./repmat(normvals,[size(samples,1),1]); 
 
% Creating the network structure: 
net.ws = samples; 
net.classes = classes; 
net.center = center; 
 
% Preparing the set of classification indexes: 
nc = numel(classes); 
net.classInds = cell(1,nc); 
for i=1:nc 
    % Finding the indexes for this class: 
    net.classInds{i} = find(classification==classes(i)); 
end 
net.b{1} = zeros(Q,1)+sqrt(-log(.5))/spread; 
 

parzenPNNclassify.m: 

function [class,score,scores] = parzenPNNclassify(net,X,nonlin) 
% PARZENPNNCLASSIFY  Classifies a vector x given a parzenPNN network. 
% 
%  This funcion uses a Parzen PNN (Probabilistic Neural Network) to 
% classify a given vector x. Also the scores of the vector are given to 
% allow to the user to manipulate it and compute confidences. 
% 
%  Parameters 
%  ---------- 
% IN: 
%  net      = The parzen PNN. 
%  X        = The matrix containing column vectors that must be 
classified. 
%  nonlin   =  The nonlinearity funciton or the sigma value for the 
default 
%             one. (def=@(u)(exp((u-1)./sigma.^2))) (def sigma=2) 
% OUT: 
%  class    = The class of the vector. 
%  score    = The score of the selected class. 
%  scores   = The scores obtained for each class. 
% 
%  Pre 
%  --- 
% -  The input network must be a valid parzenPNN structure. 
% -  The vector x must have the same number of elements as the 
%   number of columns of the samples matrix in the network. 
% 
%  Post 
%  ---- 



% -  Only a class is returned. 
% -  A score is returned in the vector scores for each class. 
% 
 
% Check params: 
if nargin<2 || size(net.ws,1)~=size(X,1) 
    error('A valid parzenPNN and a vector with the same number of 
values must be provided!'); 
end 
if nargin<3 
    % A nonlinearity with default sigma: 
    nonlin = @(u)(exp((u-1)./4)); 
elseif ~isa(nonlin,'function_handle') 
    % Using nonlin as the sigma value: 
    sigma = nonlin; 
    nonlin = @(u)(exp((u-1)./sigma.^2)); 
end 
 
% Centering the data: 
X = X - repmat(net.center,[1,size(X,2)]); 
 
% Compute the activation values for the first nurons layer: 
activations = X'*net.ws; 
 
% Using the nonlinearity function: 
activations = nonlin(activations); 
 
% Generating the scores: 
nc = numel(net.classes); 
nx = size(X,2); 
scores = zeros(nx,nc); 
for i=1:nc 
    % Getting the activation values for this class and summing up: 
    scores(:,i) = sum(activations(:,net.classInds{i}),2); 
end 
 
% Selecting the winning class: 
class = repmat(net.classes(1),[1,nx]); 
score = zeros(1,nx); 
for j=1:nx 
    % Getting the best choice: 
    [s,pos] = max(scores(j,:)); 
    % Saving the values: 
    score(j) = s; 
    class(j) = net.classes(pos); 
end 
 

 


