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this chapter we have derived and examined many of these properties. Among them are 

two that have particular significance for our study of signals and systems. The first is the 

convolution property, which is a direct consequence of the eigenfunction property of com-

plex exponential signals and which leads to the description of an LTI system in terms 

of its frequency response. This description plays a fundamental role in the frequency-

domain approach to the analysis of LTI systems, which we will continue to explore in 

subsequent chapters. The second property of the Fourier transform that has extremely 

important implications is the multiplication property, which provides the basis for the 

frequency-domain analysis of sampling and modulation systems. We examine these sys-

tems further in Chapters 7 and 8. 

We have also seen that the tools of Fourier analysis are particularly well suited to 

the examination of LTI systems characterized by linear constant -coefficient differential 

equations. Specifically, we have found that the frequency response for such a system can 

be determined by inspection and that the technique of partial-fraction expansion can then 

be used to facilitate the calculation of the impulse response of the system. In subsequent 

chapters, we will find that the convenient algebraic structure of the frequency responses 

of these systems allows us to gain considerable insight into their characteristics in both the 

time and frequency domains. 

The first section of problems belongs to the basic category and the answers are pro-

vided in the back of the book. The remaining three sections contain problems belonging 

to the basic, advanced, and extension categories, respectively. 

BASIC PROBLEMS WITH ANSWERS 

4.1. Use the Fourier transform analysis equation (4.9) to calculate the Fourier transforms 

of: 
(a) e-2U-l)u(t- 1) (b) e-2lt-ll 

Sketch and label the magnitude of each Fourier transform. 

4.2. Use the Fourier transform analysis equation (4.9) to calculate the Fourier transforms 

of: 

(a) B(t + 1) + B(t- 1) (b) fr{u( -2- t) + u(t- 2)} 

Sketch and label the magnitude of each Fourier transform. 

4.3. Determine the Fourier transform of each of the following periodic signals: 

(a) sin(21Tt + *) (b) 1 + cos(61rt + ¥) 
4.4. Use the Fourier transform synthesis equation (4.8) to determine the inverse Fourier 

transforms of: 

(a) X1 (jw) = 21T B(w) + 1r B(w - 41T) + 1r B(w + 41T) 
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{ 

2, 
(b) X2(jw) = -2, 

0, 

O:s;w:s;2 

-2 ::; w < 0 

lwl >2 
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4.5. Use the Fourier transform synthesis equation (4.8) to determine the inverse Fourier 

transform of X(jw) = IX(jw )lei<t:X(Jw), where 

IX(jw )I = 2{u(w + 3) - u(w - 3)}, 

<.X(jw) = + 7T. 

Use your answer to determine the values oft for which x(t) = 0. 

4.6. Given that x(t) has the Fourier transform X(jw ), express the Fourier transforms of 

the signals listed below in terms of X(jw ). You may find useful the Fourier transform 

properties listed in Table 4.1. 

(a) x 1 (t) = x(1 - t) + x( -1 - t) 

(b) x2(t) = x(3t- 6) 

(c) x3(t) = ;r
2

2 x(t - 1) 

4. 7. For each of the following Fourier transforms, use Fourier transform properties (Table 

4.1) to determine whether the corresponding time-domain signal is (i) real, imaginary, 

or neither and (ii) even, odd, or neither. Do this without evaluating the inverse of any 

of the given transforms. 

(a) X1(jw) = u(w)- u(w- 2) 

(b) X2(jw) = cos(2w) 

(c) X3(jw) = A(w)eiB(w), where A(w) = (sin2w)/w and B(w) = 2w + 

(d) X(jw) = 5(w - k;) 

4.8. Consider the signal 

!
0, 

x(t) = t + 
1, 

t < -.!. 
2 

-.!. < t <.!. 
2- - 2" 

t >.!. 
2 

(a) Use the differentiation and integration properties in Table 4.1 and the Fourier 

transform pair for the rectangular pulse in Table 4.2 to find a closed-form ex-

pression for X(jw ). 

(b) What is the Fourier transform of g(t) = x(t)-

4.9. Consider the signal 

x(t) = { + 1)/2, 
ltl > 1 
-1 ::; t::; r 

(a) With the help of Tables 4.1 and 4.2, determine the closed-form expression for 

X(jw). 

(b) Take the real part of your answer to part (a), and verify that it is the Fourier 

transform of the even part of x(t). 

(c) What is the Fourier transform of the odd part of x(t)? 
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4.10. (a) Use Tables 4.1 and 4.2 to help determine the Fourier transform of the following 

signal: 

x(t) = t ( 

(b) Use Parse val's relation and the result of the previous part to determine the nu-

merical value of 

f 
+oo ( • )4 A = t2 smt dt 

-00 7Tt 

4.11. Given the relationships 

y(t) = x(t) * h(t) 

and 

g(t) = x(3t) * h(3t), 

and given that x(t) has Fourier transform X(jw) and h(t) has Fourier transform 

H(jw ), use Fourier transform properties to show that g(t) has the form 

g(t) = Ay(Bt). 

Determine the values of A and B. 

4.12. Consider the Fourier transform pair 

-ltl 2 
e 1 +w2" 

(a) Use the appropriate Fourier transform properties to find the Fourier transform 
of te-ltl. 

(b) Use the result from part (a), along with the duality property, to determine the 

Fourier transform of 

4t 

Hint: See Example 4.13. 

4.13. Let x(t) be a signal whose Fourier transform is 

X(jw) = 5(w) + 5(w- 7T) + 5(w- 5), 

and let 

h(t) = u(t) - u(t - 2). 

(a) Is x(t) periodic? 

(b) Is x(t) * h(t) periodic? 

(c) Can the convolution of two aperiodic signals be periodic? 
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4.14. Consider a signal x(t) with Fourier transform X(jw ). Suppose we are given the 

following facts: 

1. x(t) is real and nonnegative. 

2. + jw )X(jw )} = Ae-2
t u(t), where A is independent oft. 

3. J _
00

00 
iX(jw )1 2 dw = 21T. 

Determine a closed-form expression for x(t). 

4.15. Let x(t) be a signal with Fourier transform X(jw ). Suppose we are given the fol-

lowing facts: 

1. x(t) is real. 

2. x(t) = 0 fort 0. 

3. J _:ooo ffie{X(jw )}eiwt dw = ltle-ltl. 

Determine a closed-form expression for x(t). 

4.16. Consider the signal 

oo sin(kE:) 1T 

x(t) = (k*) D(t- k4 ). 

(a) Determine g(t) such that 

(
sin t) 

x(t) = 1Tt g(t). 

(b) Use the multiplication property of the Fourier transform to argue that X(jw) is 

periodic. Specify X(jw) over one period. 

4.17. Determine whether each of the following statements is true or false. Justify your 

answers. 

(a) An odd and imaginary signal always has an odd and imaginary Fourier trans-

form. 

(b) The convolution of an odd Fourier transform with an even Fourier transform is 

always odd. 

4.18. Find the impulse response of a system with the frequency response 

H(jw) = (sin
2
(3w )) cos w 

w2 

4.19. Consider a causal LTI system with frequency response 

H(jw) = . 1 3 
JW + 

For a particular input x(t) this system is observed to produce the output 

y(t) = e- 3tu(t)-e-4tu(t). 

Determine x(t). 

4.20. Find the impulse response of the causal LTI system represented by the RLC circuit 

considered in Problem 3.20. Do this by taking the inverse Fourier transform of the 

circuit's frequency response. You may use Tables 4.1 and 4.2 to help evaluate the 

inverse Fourier transform. 
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BASIC PROBLEMS 

4.21. Compute the Fourier transform of each of the following signals: 
(a) [e-at cos wot]u(t), a > 0 (b) e-31tl sin 2t 

(c) x(t) = { 1 +cos 7T't, lltll :::; 1 (d) ak o(t- kT), Ia I < 1 
0, t > 1 -

(e) [te-2tsin4t]u(t) (f) [sin7Tt][sin27T(t-l)] 
1Tt 1T(t-l) 

(g) x(t) as shown in Figure P4.21(a) 

(i) x(t) = { 1 - t
2
, 0 < t 1 

0, otherwise 

(h) x(t) as shown in Figure P4.21(b) 

(j) """"+oo -lt-2nl 
Ln=-ao e 

X (t) 

X (t) 

... t t t t t t !2 

f t t 
-6 -5 -4 -3 -2 -1 0 1 2 3 

(a) (b) 

Figure P4.21 

4.22. Determine the continuous-time signal corresponding to each of the following 

transforms. 

<t X Ow) 

IXOw)l 

-1 w 

(a) 

[7 1 2 3 w 

-1 

(b) Figure P4.22 
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(a) X(jw) = 2sin[3(w-27T)] 
(w-27T) 

(b) X(jw) = cos(4w + 7r/3) 

(c) X(jw) as given by the magnitude and phase plots of Figure P4.22(a) 

(d) X(jw) = 2[o(w - 1) - o(w + 1)] + 3[o(w - 27r) + o(w + 27r)] 

(e) X(jw) as in Figure P4.22(b) 

4.23. Consider the signal 

{ 

-t 0 < t < 1 
() e ' - -x0 t = 

0, elsewhere · 
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Determine the Fourier transform of each of the signals shown in Figure P4.23. You 

should be able to do this by explicitly evaluating only the transform of x0(t) and 

then using properties of the Fourier transform. 

x0(t) 

-1 0 1 

(a) (b) 

-1 0 1 0 1 

(c) (d) Figure P4.23 

4.24. (a) Determine which, if any, of the real signals depicted in Figure P4.24 have 

Fourier transforms that satisfy each of the following conditions: 

(1) CR-e{X(jw)} = 0 

(2) dm{X(jw )} = 0 

(3) There exists a real a such that ejaw X(jw) is real 

(4) J_::'ooX(jw)dw = 0 

(5) J_::'oowX(jw)dw = 0 

(6) X(jw) is periodic 

(b) Construct a signal that has properties (1), (4), and (5) and does not have the 

others. 
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X (t) 

(a) 

(b) 

X (t) 

I 
(c) 

X t) 

(d) 

x(t) = e -t2/2 

(e) 

(f) 

The Continuous-Time Fourier Transform Chap.4 

2ij3ij v v v v 

Figure P4.24 
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4.25. Let X(jw) denote the Fourier transform of the signal x(t) depicted in Figure P4.25. 

(a) Find 1:X(jw ). 

(b) Find X(jO). 

(c) Findf:oox(jw)dw. 

(d) Evaluate J :oo X(jw ) 2s:w ejlw dw. 

(e) Evaluate J :oo iX(Jw )1 2 dw. 

(f) Sketch the inverse Fourier transform of CRe{X(jw )}. 

Note: You should perform all these calculations without explicitly evaluating X(jw ). 

X (t) 

-1 0 2 3 Figure P4.25 

4.26. (a) Compute the convolution of each of the following pairs of signals x(t) and h(t) 

by calculating X(jw) and H(jw ), using the convolution property, and inverse 

transforming. 

(i) x(t) = te-lt u(t), h(t) = e-4t u(t) 

(ii) x(t) = te-lt u(t), h(t) = te-4t u(t) 

(iii) x(t) = e-tu(t), h(t) = etu(-t) 

(b) Suppose that x(t) = e-(t-l)u(t- 2) and h(t) is as depicted in Figure P4.26. Ver-

ify the convolution property for this pair of signals by showing that the Fourier 

transform of y(t) = x(t) * h(t) equals H(jw )X(jw ). 

-1 3 Figure P4.26 

4.27. Consider the signals 

x(t) = u(t - 1) - 2u(t- 2) + u(t - 3) 

and 

00 

i(t) = L, x(t- kT), 

k= -00 
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where T > 0. Let ak denote the Fourier series coefficients of i(t), and let X(jw) 

denote the Fourier transform of x(t). 

(a) Determine a closed-form expression for X(jw ). 

(b) Determine an expression for the Fourier coefficients ak and verify that ak = 

tx(i2;k ). 
4.28. (a) Let x(t) have the Fourier transform X(jw ), and let p(t) be periodic with funda-

mental frequency wo and Fourier series representation 

+oo 

p(t) = 2.: anejnwot. 

n=-oo 

Determine an expression for the Fourier transform of 

y(t) = x(t)p(t). (P4.28-1) 

(b) Suppose that X(jw) is as depicted in Figure P4.28(a). Sketch the spectrum of 

y(t) in eq. (P4.28-1) for each of the following choices of p(t): 

(i) p(t) = cos(t/2) 

(ii) p(t) = cost 

(iii) p(t) = cos 2t 

(iv) p(t) = (sin t)(sin 2t) 

(v) p(t) = cos 2t- cost 

(vi) p(t) = 2:;: _
00 
8(t- 1Tn) 

(vii) p(t) = 2:;: _
00 

8(t - 27Tn) 

(viii) p(t) = 2:;: _
00 

8(t - 41Tn) 

(ix) p(t) = 2:;: -oo 8(t- 27Tn) - i 2:;: _00 8(t- 1Tn) 

(x) p(t) = the periodic square wave shown in Figure P4.28(b ). 

X(jw) 

-1 w 

(a) 

p (t) 

J D D D rn D D D D D ... 
(b) 

Figure P4.28 
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4.29. A real-valued continuous-time function x(t) has a Fourier transform X(jw) whose 

magnitude and phase are as illustrated in Figure P4.29(a). 

The functions Xa(t), xb(t), Xc(t), and xd(t) have Fourier transforms whose 

magnitudes are identical to X(jw ), but whose phase functions differ, as shown in 

Figures P4.29(b)-(e). The phase functions 1:.Xa(jw) and 1:.Xb(jw) are formed by 

adding a linear phase to 1:.X(jw ). The function 1:Xc(jw) is formed by reflecting 

1:X(jw) about w = 0, and 1:Xd(jw) is obtained by a combination of a reflection 

and an addition of a linear phase. Using the properties of Fourier transforms, deter-

mine the expressions for xa(t), xb(t), Xc(t), and xd(t) in terms of x(t). 

IXGw)l 

1: X Ow) 

(a) 

..................... w 

........................................... 

.............. 

....... Slope =-a 

(b) 

Figure P4.29 
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Slope =b ............ 
.................. 

...... 
.............................. 

(c) 

----------- -TI/2 

(d) 

------ ---- ----
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w 

____ ---Slope =d 

----
w 

--- (e) Figure P4.29 Continued 

4.30. Suppose g(t) = x(t) cost and the Fourier transform of the g(t) is 

(a) Determine x(t). 

G(jw) = { l, 
0, 

lwl 2 

otherwise· 

(b) Specify the Fourier transform X1 (jw) of a signal x1 (t) such that 

g(t) = Xt (I) COS 
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4.31. (a) Show that the three LTI systems with impulse responses 

h1 (t) = u(t), 

h2(t) = -28(t) + 5e-2tu(t), 

and 

all have the same response to x(t) = cost. 

(b) Find the impulse response of another LTI system with the same response to 

cost. 

This problem illustrates the fact that the response to cos t cannot be used to 

specify an LTI system uniquely. 

4.32. Consider an LTI system S with impulse response 

h(t) = sin(4(t - 1)). 
7T(t - 1) 

Determine the output of S for each of the following inputs: 

(a) x1 (t) = cos(6t + 

(b) x2(t) = sin(3kt) 

(c) X (t) = sin(4(t+ I)) 
3 7T(t+ 1) 

(d) X4(t) = cin2t)2 
7Tt 

4.33. The input and the output of a stable and causal L TI system are related by the dif-

ferential equation 

d2y(t) 6dy(t) 8 ( ) - 2 ( ) --+ --+ yt- xt 
dt2 dt 

(a) Find the impulse response of this system. 

(b) What is the response of this system if x(t) = te-2t u(t)? 

(c) Repeat part (a) for the stable and causal LTI system described by the equation 

d
2
y(t) r;:;.

2
dy(t) ( ) = 

2
d

2 
x(t) _ 

2 
( ) 

dt2 + .y L dt + y t dt2 X t 

4.34. A causal and stable LTI system S has the frequency response 

. jw +4 
H(jw)=6 2 s·. 

-w + JW 
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(a) Determine a differential equation relating the input x(t) and output y(t) of S. 

(b) Determine the impulse response h(t) of S. 

(c) What is the output of S when the input is 

x(t) = e-4tu(t)-te-4tu(t)? 

4.35. In this problem, we provide examples of the effects of nonlinear changes in phase. 

(a) Consider the continuous-time LTI system with frequency response 

H( ·w) = a- jw 
J + . ' a JW 

where a> 0. What is the magnitude of H(jw )? What is <r:..H(jw )? What is the 

impulse response of this system? 

(b) Determine the output of the system of part (a) with a = 1 when the input is 

cos(t/ J3) + cost + cos J3t. 

Roughly sketch both the input and the output. 

4.36. Consider an LTI system whose response to the input 

x(t) = [e-t + e- 3t]u(t) 

is 

y(t) = [2e-t- 2e-4t]u(t). 

(a) Find the frequency response of this system. 

(b) Determine the system's impulse response. 

(c) Find the differential equation relating the input and the output of this system. 

ADVANCED PROBLEMS 

4.37. Consider the signal x(t) in Figure P4.37. 

(a) Find the Fourier transform X(jw) of x(t). 

(b) Sketch the signal 

00 

x(t) = x(t) * L o(t - 4k). 
k= -00 

(c) Find another signal g(t) such that g(t) is not the same as x(t) and 

00 

x(t) = g(t) * L o(t- 4k). 
k= -00 
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(d) Argue that, although G(jw) is different from X(jw), G(jn;k) = X(jn;k) for all 

integers k. You should not explicitly evaluate G(jw) to answer this question. 

X (t) 

Figure P4.37 

4.38. Let x(t) be any signal with Fourier transform X(jw ). The frequency-shift property 

of the Fourier transform may be stated as 

. 
e1wot x(t) X(j(w - wo)). 

(a) Prove the frequency-shift property by applying the frequency shift to the anal-

ysis equation 

X(jw) = x(t)e- Jwt dt. 

(b) Prove the frequency-shift property by utilizing the Fourier transform of eiwot in 

conjunction with the multiplication property of the Fourier transform. 

4.39. Suppose that a signal x(t) has Fourier transform X(jw ). Now consider another signal 

g(t) whose shape is the same as the shape of X(jw ); that is, 

g(t) = X(jt). 

(a) Show that the Fourier transform G(jw) of g(t) has the same shape as 21Tx( -t); 

that is, show that 

G(jw) = 21Tx(-w). 

(b) Using the fact that 

g:{o(t + B)} = efBw 

in conjunction with the result from part (a), show that 

g:{ejBt} = 21T o(w - B). 

4.40. Use properties of the Fourier transform to show by induction that the Fourier trans-

form of 

tn-1 

x(t) = (n _ I)! e-at u(t), a > 0, 
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is 

1 

(a+jw)n' 

4.41. In this problem, we derive the multiplication property ofthe continuous-time Fourier 

transform. Let x(t) and y(t) be two continuous-time signals with Fourier transforms 

X(jw) and Y(jc.q ), respectively. Also, let g(t) denote the inverse Fourier transform 

of {X(jw) * Y(jw )}. 

(a) Show that 

1 f +oo [ 1 f +oo . ] 
g(t) = 

2
7T -oo X(j8) 

2
7T -oo Y(j(w - O))eJwt dw dO. 

(b) Show that 

- Y(j(w - 8))e1wt dw = el8t y(t). 
1 f +oo . . 

27T -00 

(c) Combine the results of parts (a) and (b) to conclude that 

g(t) = x(t)y(t). 

4.42. Let 

g1 (t) = {[cos(wot)]x(t)} * h(t) and g2(t) = {[sin(wot)]x(t)} * h(t), 

where 

00 

x(t) = L akejkiOOt 

k= -DO 

is a real-valued periodic signal and h(t) is the impulse response of a stable LTI 

system. 

(a) Specify a value for w 0 and any necessary constraints on H(jw) to ensure that 

g1 (t) = (Jl.e{as} and 

(b) Give an example of h(t) such that H(jw) satisfies the constraints you specified 

in part (a). 

4.43. Let 

2 sint 
g(t) = x(t) cos t * -. 

7Tt 

Assuming that x(t) is real and X(jw) = 0 for lwl 2: 1, show that there exists an 

LTI system S such that 

s 
x(t) g(t). 
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4.44. The output y(t) of a causal LTI system is related to the input x(t) by the equation 

dy(t) J +oc 

-d- + lOy(t) = x( r)z(t- r) dr - x(t), 
f -oc 

where z(t) = e-t u(t) + 3 o(t). 

(a) Find the frequency response H(jw) = Y(jw )IX(jw) of this system. 

(b) Determine the impulse response of the system. 

4.45. In the discussion in Section 4.3.7 ofParseval's relation for continuous-time signals, 

we saw that 

---1 a 1-

0 

J 
+oc 1 J +oc 

-oc lx(t)l
2 

dt = 
2

1T -oo IX(jw )1
2 

dw. 

This says that the total energy of the signal can be obtained by integrating IX(jw )1 2 

over all frequencies. Now consider a real-valued signal x(t) processed by the ideal 

bandpass filter H(jw) shown in Figure P4.45. Express the energy in the output sig-

nal y(t) as an integration over frequency of IX(Jw )1 2
• sufficiently small so that 

IX(Jw )I is approximately constant over a frequency interval of show that 

the energy in the output y(t) of the bandpass filter is approximately proportional to 

On the basis of the foregoing result, is proportional to the energy 

in the signal in a around the frequency w0• For this reason, IX(jw )12 is 

often referred to as the energy-density spectrum of the signal x(t). 

w Figure P4.45 

4.46. In Section 4.5 .1, we discussed the use of amplitude modulation with a complex 

exponential carrier to implement a bandpass filter. The specific system was shown 

in Figure 4.26, and if only the real part of f(t) is retained, the equivalent bandpass 

filter is that shown in Figure 4.30. 

In Figure P4.46, we indicate an implementation of a bandpass filter using 

sinusoidal modulation and lowpass filters. Show that the output y(t) of the sys-

tem is identical to that which would be obtained by retaining only CRe{f(t)} in Fig-

ure 4.26. 
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x(t) y(t) 

t 
EJ---<r-1 

I t 

w Figure P4.46 

4.47. An important property of the frequency response H(jw) of a continuous-time LTI 

system with a real, causal impulse response h(t) is that H(jw) is completely spec-

ified by its real part, (Jl.e{H(jw )}. The current problem is concerned with deriving 

and examining some of the implications of this property, which is generally referred 

to as real-part sufficiency. 

(a) Prove the property of real-part sufficiency by examining the signal he(t), which 

is the even part of h(t). What is the Fourier transform of he(t)? Indicate how 

h(t) can be recovered from he(t). 

(b) If the real part of the frequency response of a causal system is 

(Jl.e{H(jw )} = cos w, 

what is h(t)? 

(c) Show that h(t) can be recovered from h 0 (t), the odd part of h(t), for every 

value of t except t = 0. Note that if h(t) does not contain any singularities 

[o(t), u1 (t), u2(t), etc.] at t = 0, then the frequency response 

J 

+oc 

H(jw) = -oc h(t)e- jwt dt 

will not change if h(t) is set to some arbitrary finite value at the single point 

t = 0. Thus, in this case, show that H(jw) is also completely specified by its 

imaginary part. 
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EXTENSION PROBLEMS 

4.48. Let us consider a system with a real and causal impulse response h(t) that does not 

have any singularities at t = 0. In Problem 4.47, we saw that either the real or the 

imaginary part of H(jw) completely determines H(jw ). In this problem we derive 

an explicit relationship between HR(jw) and H1(jw ), the real and imaginary parts 

of H(jw). 

(a) To begin, note that since h(t) is causal, 

h(t) = h(t)u(t), (P4.48-l) 

except perhaps at t = 0. Now, since h(t) contains no singularities at t = 0, the 

Fourier transforms of both sides of eq. (P4.48-l) must be identical. Use this 

fact, together with the multiplication property, to show that 

H(
. ) - 1 J+x H(j'YJ)d 

JW - -.- --- 'YJ. 
j7T -X w- 'YJ 

(P4.48-2) 

Use eq. (P4.48-2) to determine an expression for HR(jw) in terms of H 1(jw) 

and one for H1(jw) in terms of HR(jw ). 

(b) The operation 

( ) 
_ 1 J +x X( T) d 

yt-- --T 
7T -X t- T 

(P4.48-3) 

is called the Hilbert transform. We have just seen that the real and imaginary 

parts of the transform of a real, causal impulse response h(t) can be determined 

from one another using the Hilbert transform. 

Now considereq. (P4.48-3), and regard y(t) as the output of an LTI system 

with input x(t). Show that the frequency response of this system is 

H( . ) = { - j, w > 0 
JW . < o· ], w 

(c) What is the Hilbert transform of the signal x(t) = cos 3t? 

4.49. Let H(jw) be the frequency response of a continuous-time LTI system, and suppose 

that H(jw) is real, even, and positive. Also, assume that 

max{H(jw )} = H(O). 
w 

(a) Show that: 

(i) The impulse response, h(t), is real. 

(ii) max{ih(t)i} = h(O). 

Hint: If f(t. w) is a complex function of two variables, then 
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(b) One important concept in system analysis is the bandwidth of an LTI system. 

There are many different mathematical ways in which to define bandwidth, 

but they are related to the qualitative and intuitive idea that a system with fre-

quency response G(jw) essentially "stops" signals of the form eiwt for values of 

w where G(jw) vanishes or is small and "passes" those complex exponentials 

in the band of frequency where G(jw) is not small. The width of this band is the 

bandwidth. These ideas will be made much clearer in Chapter 6, but for now we 

will consider a special definition of bandwidth for those systems with frequency 

responses that have the properties specified previously for H(jw ). Specifically, 

one definition of the bandwidth Bw of such a system is the width of the rect-

angle of height H(jO) that has an area equal to the area under H(jw ). This is 

illustrated in Figure P4.49(a). Note that since H(jO) = maxw H(jw ), the fre-

quencies within the band indicated in the figure are those for which H (jw) is 

largest. The exact choice of the width in the figure is, of course, a bit arbitrary, 

but we have chosen one definition that allows us to compare different systems 

and to make precise a very important relationship between time and frequency. 

What is the bandwidth of the system with frequency response 

H(jw) 

H(O) 

. { 1, H(jw) = 
0, 

lwl < w? 
lwi>W. 

---: Area of rectangle = 

1- area under H (jw) 

w 

(a) Figure P4.49a 

(c) Find an expression for the bandwidth Bw in terms of H(jw ). 

(d) Let s(t) denote the step response of the system set out in part (a). An important 

measure of the speed of response of a system is the rise time, which, like the 

bandwidth, has a qualitative definition, leading to many possible mathematical 

definitions, one of which we will use. Intuitively, the rise time of a system is a 

measure of how fast the step response rises from zero to its final value, 

s(oo) = lim s(t). 
(-H:IJ 

Thus, the smaller the rise time, the faster is the response of the system. For the 

system under consideration in this problem, we will define the rise time as 

s(oo) 

tr = h(O) 
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Since 

s' (t) = h(t), 

and also because of the property that h(O) = maxt h(t), tr is the time it would 

take to go from zero to s( oo) while maintaining the maximum rate of change of 

s(t). This is illustrated in Figure P4.49(b ). 

Find an expression for tr in terms of H(jw ). 

s(t) 

(b) Figure P4.49b 

(e) Combine the results of parts (c) and (d) to show that 

Bwtr = 27r. (P4.49-l) 

Thus, we cannot independently specify both the rise time and the bandwidth of 

our system. For example, eq. (P4.49-l) implies that, if we want a fast system (tr 

small), the system must have a large bandwidth. This is a fundamental trade-off 

that is of central importance in many problems of system design. 

4.50. In Problems 1.45 and 2.67, we defined and examined several of the properties and 

uses of correlation functions. In the current problem, we examine the properties of 

such functions in the frequency domain. Let x(t) and y(t) be two real signals. Then 

the cross-correlation function of x(t) and y(t) is defined as 

c/>xy(t) = X(t + T)y( T) dT. 

Similarly, we can define cf>_vx(t), cf>xx(t), and c/>yy(t). [The last two of these are called 

the autocorrelation functions of the signals x(t) and y(t), respectively.] Let <I> xy(jw ), 

<l>yx(jw ), <l>xxUw ), and <l>yy(jw) denote the Fourier transforms of cf>xy(t), cf>.vx(t), 

cf>xx(t), and cf>.v_v(t), respectively. 

(a) What is the relationship between <l>xy(jw) and <l>yx(}w )? 

(b) Find an expression for <l>xy(jw) in terms of X(jw) and Y(jw ). 

(c) Show that <l>_u(jw) is real and nonnegative for every w. 

(d) Suppose now that x(t) is the input to an LTI system with a real-valued impulse 

response and with frequency response H(jw) and that y(t) is the output. Find 

expressions for <l>xy(jw) and <l>yy(}w) in terms of <l>xxUw) and H(jw ). 
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(e) Let x(t) be as is illustrated in Figure P4.50, and let the LTI system impulse 

response be h(t) = e-at u(t), a > 0. Compute <I> xxCjw ), <I> xy(jw ), and <l>yy(jw) 

using the results of parts (a)-( d). 

(f) Suppose that we are given the following Fourier transform of a function cf>(t): 

. w 2 + 100 
<l>(jw) = w 2 + 25 · 

Find the impulse responses of two causal, stable LTI systems that have autocor-

relation functions equal to cp(t). Which one of these has a causal, stable inverse? 

x(t) 

Figure P4.50 

4.51. (a) Consider two LTI systems with impulse responses h(t) and g(t), respectively, 

and suppose that these systems are inverses of one another. Suppose also that the 

systems have frequency responses denoted by H(jw) and G(jw ), respectively. 

What is the relationship between H(jw) and G(jw )? 

(b) Consider the continuous-time LTI system with frequency response 

H(jw) = { 
1
· 

0, 
2 < iwl < 3 
otherwise 

(i) Is it possible to find an input x(t) to this system such that the output is as 

depicted in Figure P4.50? If so, find x(t). If not, explain why not. 

(ii) Is this system invertible? Explain your answer. 

(c) Consider an auditorium with an echo problem. As discussed in Problem 2.64, 

we can model the acoustics of the auditorium as an LTI system with an im-

pulse response consisting of an impulse train, with the kth impulse in the train 

corresponding to the kth echo. Suppose that in this particular case the impulse 

response is 

h(t) = L e-kT 8(t- kT), 

k=O 

where the factor e-kT represents the attenuation of the kth echo. 

In order to make a high-quality recording from the stage, the effect of the 

echoes must be removed by performing some processing of the sounds sensed 

by the recording equipment. In Problem 2.64, we used convolutional techniques 

to consider one example of the design of such a processor (for a different acous-

tic model). In the current problem, we will use frequency-domain techniques. 

Specifically, let G(jw) denote the frequency response of the LTI system to be 
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used to process the sensed acoustic signal. Choose G(jw) so that the echoes are 

completely removed and the resulting signal is a faithful reproduction of the 

original stage sounds. 

(d) Find the differential equation for the inverse of the system with impulse re-

sponse 

h(t) = 2 O(t) + UJ (t). 

(e) Consider the LTI system initially at rest and described by the differential equa-

tion 

d
2

y(t) 
6

dy(t) 
9 

( ) _ d
2 
x(t) 

3 
dx(t) 

2 
( ) 

d t2 + d t + y t - + ----;[( + X t . 

The inverse of this system is also initially at rest and described by a differen-

tial equation. Find the differential equation describing the inverse, and find the 

impulse responses h(t) and g(t) of the original system and its inverse. 

4.52. Inverse systems frequently find application in problems involving imperfect mea-

suring devices. For example, consider a device for measuring the temperature of a 

liquid. It is often reasonable to model such a device as an LTI system that, because 

of the response characteristics of the measuring element (e.g., the mercury in ather-

mometer), does not respond instantaneously to temperature changes. In particular, 

assume that the response of this device to a unit step in temperature is 

s(t) = (1 - e -r12 )u(t). (P4.52-1) 

(a) Design a compensatory system that, when provided with the output of the mea-

suring device, produces an output equal to the instantaneous temperature of the 

liquid. 

(b) One of the problems that often arises in using inverse systems as compensators 

for measuring devices is that gross inaccuracies in the indicated temperature 

may occur if the actual output of the measuring device produces errors due to 

small, erratic phenomena in the device. Since there always are such sources 

of error in real systems, one must take them into account. To illustrate this, 

consider a measuring device whose overall output can be modeled as the sum 

of the response of the measuring device characterized by eq. (P4.52-1) and 

an interfering "noise" signal n(t). Such a model is depicted in Figure P4.52(a), 

where we have also included the inverse system of part (a), which now has as its 

input the overall output of the measuring device. Suppose that n(t) = sin wt. 

What is the contribution of n(t) to the output of the inverse system, and how 

does this output change as w is increased? 

(c) The issue raised in part (b) is an important one in many applications of LTI 

system analysis. Specifically, we are confronted with the fundamental trade-

off between the speed of response of the system and the ability of the system 

to attenuate high-frequency interference. In part (b) we saw that this trade-

off implied that, by attempting to speed up the response of a measuring device 

(by means of an inverse system), we produced a system that would also amplify 
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I I 
Actual measuring device n(t) 

I 
I 
I 
I ........ 
I 
I 

LTI model of 
measuring device 

s(t) = (1- e-t/2) u(t) 

I 
I 
I 
I 

+ 
_l 

I 
I 

l ____________________ j 

(a) 

r--------------------1 
I n(t) I 

Inverse system 
to LTI model 
of measuring 

device 

I Perfect measuring I 
device Compensating 

I s (t) = u (t) 1 system 
I I L ___________________ J 

(b) 

Figure P4.52 

Chap.4 

corrupting sinusoidal signals. To illustrate this concept further, consider a mea-

suring device that responds instantaneously to changes in temperature, but that 

also is corrupted by noise. The response of such a system can be modeled, as 

depicted in Figure P4.52(b ), as the sum of the response of a perfect measuring 

qevice and a corrupting signal n(t). Suppose that we wish to design a compen-

satory system that will slow down the response to actual temperature variations, 

but also will attenuate the noise n(t). Let the impulse response of this system 

be 

h(t) = ae -at u(t). 

Choose a so that the overall system of Figure P4.52(b) responds as quickly 

as possible to a step change in temperature, subject to the constraint that the 

amplitude of the portion of the output due to the noise n(t) = sin 6t is no larger 

than 114. 

4.53. As mentioned in the text, the techniques of Fourier analysis can be extended to 

signals having two independent variables. As their one-dimensional counterparts do 

in some applications, these techniques play an important role in other applications, 

such as image processing. In this problem, we introduce some of the elementary 

ideas of two-dimensional Fourier analysis. 

Let x(t1, t2) be a signal that depends upon two independent variables t1 and 

t2 . The two-dimensional Fourier transform of x(t1, t2 ) is defined as 

X(jw,, jw2) = L+: L+xx x(t,, t2)e- j(w,t, +w,t,) dt, dt2. 

(a) Show that this double integral can be performed as two successive one-

dimensional Fourier transforms, first in t 1 with t2 regarded as fixed and then 

in t2. 



Chap. 4 Problems 357 

(b) Use the result of part (a) to determine the inverse transform-that is, an expres-

sion for x(tJ, t2) in terms of X(jw1, jw2). 

(c) Determine the two-dimensional Fourier transforms of the following signals: 

(i) x(t1, t2) = e-t1 +2t2 u(t1 - 1)u(2 - t2) 

•• { if -1 < t1 ::; 1 and -1 ::; t2 ::; 1 
(n) x(t1, t2) = O, 

otherwise 

(iii) x(t
1
, t

2
) = { 

0
e-lt1Ht21, ifhO ::; .t1 ::; 1 or 0 ::; t2 ::; 1 (or both) 
, ot erw1se 

(iv) x(t1, t2) as depicted in Figure P4.53. 

(v) e-ltl +t2l-lt1-t2l 

-1 

-1 

x(t1, t2) = 1 in shaded area 
and 0 outside 

Figure P4.53 

(d) Determine the signal x(t1, t2) whose two-dimensional Fourier transform is 

X(jw1, jw2) = 
4 

l>(w2- 2wJ). 
+ )WJ 

(e) Let x(t1, t2) and h(t1, t2) be two signals with two-dimensional Fourier trans-

forms X(jw 1, jw2) and H(jw 1, jw2), respectively. Determine the transforms 

of the following signals in terms of X(jw 1, jw2) and H(jw 1, jw2): 

(i) x(t1 - T1, t2 - T2) 

(ii) x(at1, bt2) 

(iii) y(tJ, t2) = J_+
00

00 J_+
00

00 

X(T], T2)h(t1 - T], f2- T2)dT1 d T2 
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