Question 1.

In the Parametric Method section of the course, we learned how to draw a separation
hyperplane between two classes by obtaining w0, the argmax of the cost function J(w) =
W'Sew / w'S,w. The solution was found to be @o = S, (11 = m2) | where m; and m;
are the sample means of each class, respectively. Some students raised the question: can
one simply use J(w) = w'Sgw instead (i.e. setting S, as the identity matrix in the solution
Wo? Investigate this question by numerical experimentation.

Solution 1

The most famous example of dimensionality reduction is PCA(Principle
Components Analysis). This technique searches for directions in the data that have
largest variance and subsequently project the data onto it. However, the directions
of maximum variance may be useless for classification. PCA is an unsupervised
technique and as such does not include label information of the data. For example,
if we image cigar like clusters in 2-dimensions, one cigar has x = 1 and the other x
= 2. The cigars are positioned in parallel and very closely together like the below
pictures.

35 35

Apply PCA to

25 25 0 00 0ODOO O
0 0 ﬁ
‘ each class

15 15

05 05

For classification, this would be a terrible projection, because all labels get
evenly mixed and we destroy useful information. A much more useful projection is
orthogonal to the cigars, i.e. in the direction of least overall variance, which would
perfectly separate the data cases. So the question is, how do we utilize the label
information in finding informative projection? To that purpose Fisher linear
discriminant analysis considers maximizing the following objective

J(w) = w'Sgw / w'S,w

We can get the solution, wp = Sw™'(m, —m,), by the generalized eigenvalue
problem.
The my and m; represent the sample means of each class. Some students raised the
question: can one simply use J(w) = w'Sgw instead (i.e. setting S, as the identity
matrix in the solution wy?. It is obvious the given solution, wp- m1-m2, depends on
only the sample means of each class and it doesn’t consider the variances of the
classes. In other words, the scatter factors, the spread of data around the mean, for
each class aren’t considered. The following case is the counterexample of the given
solution.

35-

25¢

15F

0.5+

Fig.1-1. The counterexample of the given solution.

In the above pictures, both are the same means of each class but different
variances, so they have the same hyperplane by the given solution. In result, the
left case is well classified, but the right case is mixed up. Therefore, the given
solution isn’t guaranteed to find a projection vector used to classify.

Here were present another counterexample using real training samples by matlab
simulation.

Example)

* Training samples
-Class 1={(1,2), (2,3), (3,3), (4,5), (5,5) }
- Class 2 ={(1,0), (2,1), (3,1), (3,2), (5,3), (6,5) }

, Training samples for each class

6 L

5 + + *

4l

3 + + *

2 + *

1 * *

0 *

-1 L L 1 1 1 1 1 |
-1 0 1 2 3 4 5 6 7

Fig.1—-2. Training samples for classl and class?

-S1=cov(Classl)=[25 2.0;20 1.8]
-S2=cov(Class2) =[3.5 3.2;32 3.2]
-Sw=S1+S2=[6.0 52; 52 5.0]

- Forcase 1 :wp= Sw'(m, —m,) =[-3.5752 4.0382]
- Forcase 2 : wp- (m, —m,) =[-0.3333 1.6000]

Sw = S1 + S2: Classes are well separated

Sw = Identity Matrix : Classes are mixed up

Fig.1-3. Classification example using the Fisher linear discriminant(FLD)

As you can see the result of two cases, classes are well separated in case 1 but,
classes are mixed up in case2. In conclusion, if we get a projection vector using wp =
Sw™*(m, —m,), we are guaranteed that the classes are well separated, but wp =
(m,—m,) isn’t guaranteed to find a projection.

Question 2.
Obtain a set of training data. Divide the training data into two sets. Use the first set as
training data and the second set as test data.

a) Experiment with designing a classifier using the neural network approach.
b) Experiment with designing a classifier using the support vector machine approach.

¢) Compare the two approaches.

Solution 2:

a)

The NN(Neural Network) approach is a pattern classification algorithm which falls
into the broad class of nearest neighbor like algorithm. It is called a neural
network because it is based on the concept of neurons in the brain. The figure
below displays the architecture for a NN that recognizes 2 classes.

Input Layer Hidden Layer Output Layer
Arc : :
(Connection)
i o1
12
13
02

Node

Fig.2—1. The components of neural network classification

The NN has 3 layers of nodes.
Input Layer

- Input layer has the attributes participating in the classification.

- Attribute selection involves the examination of data and the domain
expert knowledge.

- The inputs are the attribute values for each data tuple.

- The number of nodes in input layer is typically defined based on
different attribute types and attribute domain.

Hidden Layer
- Hidden layer is constructed for the process of learning by computations

on their nodes and arcs weights.

- A network can have one or more hidden layers.

- The number of nodes is determined by experimentation.

- Too many nodes lead to over-fitting and too little nodes reduces the
classification accuracy.

Output Layer
- The result of the classification is the output of a node in output layer.

- Weights and activation functions determine the output.
- Typically the is one output node for each class.

The _connections (arcs) are from input nodes to hidden layer nodes and from
hidden layer nodes to output nodes. If one topology doesn’t give good results
after some iterations of learning, then change the topology. Each arc is assigned
an initial random weight used in training and modified in the learning process.

Training process

- Run a sample form training set,

- The summation of weights and activation functions are applied at each
node of hidden and output layers, until output is generated
=>» Feed-Forward Process

- Compare output with the expected output from the training set.

- If output doesn’t match, modify arc weights and biases of nodes
=» Back-Propagation Process

- Run the next sample using the same process

Advantage of neural network technique
- Tolerance to noise data

Drawback of neural network technique
- Long learning process
- Getting the number of hidden layers using only experiment

Experimental result : Error rate using the neural network approach

o Training samples for each class = 100
o Test samples = 200 (class1 = 100, class2 = 100)
of hidden layers
10 30 50
of iterations
for back-propagation
10 50% 6.5% 7.0%
50 50% 6.5% 6.0%
100 50% 6.5% 6.0%

== The error rate using the Bayesian decision rule : 6.0%

Compared with Bayesian decision, it produces similar error rate, but it takes
long learning process while simulation and it has a drawback to get the best
value for the number of hidden layers by experiment. In this case, ‘50’ is the best
value for the number of hidden layer.

Simulation

results using neural network and Bayesian decision

Classification by bayes decision rule

Training samples for each class = 100
Test samples = 200 (class1 = 100, class2 = 100)

450 -
9 °
8
400 - °
>
° g
oo o
350 -
O TrainingPattern(Class1)
TrainingPattern(Class?2)
O TestPattern
[) ErrorPattern
300 1 1 1 1 1 1 |
320 340 360 380 400 420 440 460

Fig.2—2. The classification using the Bayesian decision(Error rate = 6.0%)

Classification by Neural Network technique

450 -
9 °©
8
400 - o
>
350 - S
o
TrainingPattern(Class1) | ,«© ¢
TrainingPattern(Class2)
O TestPattern
® ErrorPattern
300 | | | | | | |
320 340 360 380 400 420 440 460

X

Fig.2—3. The classification using the neural network (Error rate = 6.5%)

b)
SVM (Support Vector Machine) is a kind of supervised learning method used
for classification and regression.

For classification, SVM operate by finding a hypersurface in the space of
possible inputs. This hypersurface will attempt to split one class samples from
another class samples. The split will be chosen to have the largest distance from
the hypersurface to the nearest of each class samples. In other words, the
objective of SVM is that the hyperplane leaves the maximum margin between the
two classes. hence they are also known as maximum margin classifiers. The
parameters in maximum margin hypesurface can be calculated by a
QP(quadratic program) optimization problem.

Class2 test sample

Fig.2—4. The hyperplane with maximum margein

In the above pictures, the red and blue hyperplanes classified well samples into
two classes. Compared with the blue dotted hyperplane, the red dashed
hyperplance is very closer to the class. If we place a calass2 test sample(green
circle) to the above position, the red hyperplane fail in classification. So, it is very
important that hyperplane have maximized margin.

Advantages

- The overfitting problem can be easily controlled

- Excellent generalization properties

- Objective function has no local minima

- Can be used to find non-linear discriminant functions

- Complexity of the classifier is characterized by the number of support vectors

Drawbacks
- It’s not clear how to select a kernel function in a principled manner

- Tends to be slower than other methods

Experimental result

o Training samples for each class = 100
o Test samples = 200(class1 = 100, class2 =100)
° Kernel function : Gaussian

460 ®

440

420 -

400 -

380

360 -

340 -

320
320

Fig.2—5. non—1linear decision boundaries by SVM

10

Classification by Support vector machines

460 - 5
440 -
o
o 0
4201 o o ; o o 8 °
09% % % 9 5450 9%
- @O o o
o o mpréoﬁfﬁbmﬁ(@ o 3 °©
4001) o B RoBg o B
o)O 54 oé% ”’@JO o ® 0 ”80 °
o © %0 Bogd S0 o
¢} o Oooog) 00 Q)O.co/oo o]
380 - o > @ 0 9
= o o Oo%o 8 @;O oO eo ©
5O 5 .o ° O%O S
° o 0 o Q o
360 =8¢ 80 el ’
8 o0 Po OO ©
o 0 90
00y O
8 [ele)
340+ - — © ©
O TrainingPattern(Class1) |© % .
TrainingPattern(Class?2)
320 O TestPattern 5
® ErorPattern
300 | | | | | | J
320 340 360 380 400 420 440 460
X

Fig.2—6. The classification result by SVM(Error rate = 5.5%)

In the experiment, | chose the Gaussian function as a kernel function because it
performs well under general smoothness assumption.

C) Comparison the SVM(Support Vector Machine) and NN(Neural Network)

The SVM and the NN are trained in terms of deviation performance, the former
to find the error bound and the latter to minimize MSE. The SVM has the
following advantages over the NN

i) It can obtain the global optimization
ii) The overfitting problem can be easily controlled

So, lots of empirical tests have showed that the performance of SVM is better

than NN in classification.

11

In this test, | have examined the results of classification by experiments with
designing classifiers using neural network and support vector machine approaches.

In my experiments, the SVM and the NN approaches perform well in
classification even though the NN shows bad results in accordance with the
number of hidden layers and the initial value of weights.

Although previous research claims that the SVM method is superior to the NN,
but the performance of SVM in not always better than the NN in my experiments
(refer to the below table2-1)

Table 2-1. Comparison of SVM and NN on the test using error rate(%b)

of trial
1 2 3 4 5
Classifier
Bayesian 6.5 6.0 6.5 6.0 6.0
NN 55 6.5 55 6.0 6.5
SVM 55 6.0 5.5 6.0 6.0

= | used SVM and NN function codes download from the statistical pattern
recognition Matlab tool box
(http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html)

12

http://cmp.felk.cvut.cz/cmp/software/stprtool/index.html

Question 3.

Using the same data as for question 2 (perhaps projected to one or two dimensions for
better visualization),

a) Design a classifier using the Parzen window technique.
b) Design a classifier using the K-nearest neighbor technique
c) Design a classifier using the nearest neighbor technique.

d) Compare the three approaches.

Solution 3:
It is the general expression of non-parametric density estimation p(x) = % , We
have made two approximations, the Parzen window and the k-nearest neighbor
techniques.
where, X is inside some region R
k is the number of samples inside R
n is the total number of samples
V is the volume of R
a) Parzen window approach
Choose a fixed value for volume v and determine the corresponding k from the
data.

2.5+ . @) 4

1.5¢ B

0.5F B

Fig.3—1. The example of the Parzen window technique

13

How to choose n and V ? The number of samples is always fixed in experiment,
thus the only available parameter is V. If V is too small, p(x) = 0 for most X,
because most regions will have no samples. Thus have to find compromise for V, it
is not too small so that it has enough samples but also not too large so the p(x) is
approximately constant inside V. so, the problem of choosing the V is crucial in the
Parzen window approach.

Experimental results

o Training samples for each class = 100
o Test samples = 200(class1 = 100, class2 =100)
° Kernel function : Gaussian

Classification by parzen window technique

440 -
o] o o
R o og o
L - o o © o
420 © o6 o . o .
& @ 5 (Q o) O(, o o o
o ° h 5B OOooO © 20 © 8 Cco % ’ ©
400 | °© o 0 .u®En® 80 L o8
o % g 8§O o o ©
o ° o 37 oo @& 080 ©
° @ 0)0 D ®° o OOO@ o ® o® @ °
“ o o o 99 0°°® 8 5% o) 3
380+ - 0 0090 o o &L
o .. [] o ® o [o)0]
- R fo) i o OOO Z o OOO o
[e] o]
L o 9 o ©
360 ° @0200%00@0 900
© (&) © o]
° O0p @ S
o @ o o
340 - ° 3 9°%04 o
, .. 60 “y°
O TrainingPattern(Class1) o °
320 - TrainingPattern(Class2)
O TestPattern © o
® ErrorPattern
300 L L L L L |
320 340 360 380 400 420 440
X

Fig.3—2. The classification using the Parzen window (Error rate = 8%)

14

Table.3—1. The error rate for each window size(V)

Window size(V)

0.1

10

100

500

1000

>1000

Error rate(%)

28.5

155

8.0

7.5

7.5

50

As you can see the above the table 3-1, it is crucial to choose the best window size
as previously mentioned.

2) K-nearest approach
Choose a fixed value for k and determine the corresponding volume V from the
data.

351 1
3t 3 4
2.5 - o _
o
2, -
15F 1
1t o) 4
0.5} 1
O Il Il Il Il Il I I
0 0.5 1 15 2 2.5 3 3.5 4

Fig.3—3. The example of the K—nearest neighbor(k = 3)
For that case, it is crucial to find k. If k is large so that error rate is minimized,

then it will lead to over-smoothed boundaries, but k is small so that only near by
samples are included, then will lead to noisy decision boundaries.

15

Experimental results

o Training samples for each class = 100
o Test samples = 200(class1 = 100, class2 =100)
° K=5

Classification by k-nearest neighbor technique

440
[e) [0
420 oo
[o %% & o @ OO o
° %% °© 809 ° 5
o @?@D ©
o o 2 o o ©
® © @80 0 C® oo, G © 80
o O~0O 0]
400 - o © S0 % 2% 0 @B 0 oo 8° °
° CoO@ °,° o, &% 8 %%%)oo oo oo ©
o ¢ »% 6,20 %, o0°¢ Do
©o o 9 0o oo @ ©
° ° o 00 ° 5
380 o 5 ° % o%eg 8 3%
o o o o0 %4 e o oo
o o o Ry o ® 5 [e] °
> w © OO %o o
© 0o o
Oo % ¥ 020 O o o
360 . 005, o, g 0@
o @
° o °o OO OoO °°
340 S elog o °
0] ° 0] OO
O TrainingPattern(Class1) | ° 8 o
.. [0
320 TrainingPattern(Class?2) 5 %
O TestPattern
® ErrorPattern
300 L L L L L |
320 340 360 380 400 420 440
X

Fig.3—4. The classification using K—nearest neighbor (Error rate = 8%)

Table.3—2. The error rate for each kvalue
(# of training = 1000, # of test = 2000)

Kk 1 5 10 50 100 500

Error rate(%) 8.65 6.35 5.75 5.70 5.45 6.0

As you can see the above the table 3-2, it is crucial to choose the best k as
previously mentioned.

16

c)

In general, the decision boundary is the boundary in input space that our
decision as to the class of the input changes aw e cross this boundary. In the
nearest neighbor algorithm, the decision boundary is determined by the lines
which are the perpendicular bisectors of the closet training points with different
training labels. See Fig.3-5. This is called a Voronoi diagram.

Fig.3—5. The decision boundary for the nearest neighbor classification

(The blue lines represent the decision boundary)

Experimental result

o Training samples for each class = 100
o Test samples = 200(class1 = 100, class2 =100)

17

Training Patterns for the nearest neighbor

440 -
o o o
o
o
420 - °
o o o
o
400 - o °©
o o © o [}
e} © o ©
o o
380 - o
360 -
340 +
320 +
O TrainingPattern(Class1)
< TrainingPattern(Class?2)
300 : :

1 1 1 1 1 1 |
340 350 360 370 380 390 400 410 420 430

Fig.3—6. The training samples

The Voronoi diagram
100 - G D

N
% St e e e
R i ik e
80| 4 :
&
70 -
= 5o RS
60 +
50 - —
§ £ Ein s 58S
40+ e
0 = g Fi2:52 58S
30+ it : i
¢ £ E5E S ESES
201 P fifinienis
10+
0 | | E G A I
20 30 40 50 60 70 90 100

Fig.3—7. The decision boundary (Voronoi diagram)

= | used a Vonoroi function code download from the website.
(http://stuff. mit.edu/afs/sipb.mit.edu/user/arolfe/mat)

d)
Table 3-3. The error rate(%) for each technique
of trial
1 2 3 4 5
Classifier
Parzen window 7.5 7.5 7.5 6.5 7.5
K-nearest 7.5 9.5 45 7.5 7.5
Nearest 9.0 8.5 9.0 75 8.0
neighbor

The Parzen, KNN, and NN perform well in classification. In the experiment, the
Parzen is a little better than the KNN and the NN, but it’s not always true. The
performance of all methods depends on the number of samples. so, we need a lot of
samples for accurate density estimation.

The KNN gives good classification if the number of samples is large enough and
has a few advantages, it can be applied to the data from any distribution and it is
very simple and intuitive. It is difficult to choose best k in this method. The k in the
KNN plays a similar role as the window size in the Parzen window.

The Parzen window also gives good classification if the number of samples is
large, it is also difficult to choose the appropriate window size.

The parametric techniques forms rarely fit the densities encountered in practive,
but the non-parametric techniques can be used with arbitrary distributions and
without an assumption about forms of the underlying densities are known.

19

Matlabe Code

% Questionl : Fisher Linear Discriminant

% Designed by JT GONG

96 ___
clear all:
Range = 1000

Classl =[12:23:33:45:55]:

Class2 =[10:21:31:32:53:65]:

[x1 y1] = size(Classl):

[x2 y2] = size(Class?);

ul = sum(Classl)./x1:

u? = sum(Class?)./x2:

sl = cov(Classl); %scatter matrix for classl
s2 = cov(Class2); %scatter matrix for class?2
figure(1)

hold on

axis([-17 -17])
plot(Classl(:,1),Classl(:,2),'r+', Class?(:,1),Class2(:,2),'b*")

title('Training samples for each class')

hold off
swW =gl + 82: %$Within the class scatter
wl = inv(sw)*(ul—-u2)"

20

for i = 1:Range
x(i) = =2 + (i—1)*0.01;
end

y =wl(2)/wl(l) *x + 5

fori=1:x1
for j = 1:Range
dist(j,i) = sum((Classl(i,:) — [x(3) y(3)]).”2);
end

end

[Classlvalue Classlindex] = min(dist);

fori=1:x2
for j = 1:Range
dist(j.i) = sum((Class2(i,:) = [x(3) y(3)]).”2):
end

end

[Class?value Class2index] = min(dist):

figure(?)

hold on

axis([-17 -17])

plot(Classl(:,1),Classl(:,2),'r+', Class2(:,1),Class?(:,2),'b*")

plot(x,y)

fori=1:x1
A = zeros(2,2);
A(1,:) = Classl(i,:)s

A(2,:) = [x(Classlindex(i)) y(Classlindex(i))]:

plot(A(:,1),A(:,2),'b:")

end

fori=1:x2
A = zeros(2,2);

A(1,:) = Class2(i,:)s

21

A(2,:) = [x(Class?index(i)) y(Class2index(i))]:

plot(A(:,1),A(:,2),'r:')

end

title('Sw = S1 + S2 : Classes are well separated')

hold off

w2 = (ul-u?2); %$sw is a identity matrix

y =w2(2)/w2(1) *x + 15 ;

fori=1:x1
for j = 1:Range
dist(j,i) = sum((Classl(i,:) — [x(3) y(3)]).72);
end

end

[Classlvalue Classlindex] = min(dist);

fori=1:x2
for j = 1:Range
dist(j.i) = sum((Class2(i,:) = [x(3) y(3)]).”2):
end

end

[Class?value Class2index] = min(dist):

figure(3)
hold on
axis([-17 -17])

plot(Classl(:,1),Classl(:,2),'r+', Class?(:,1),Class2(:,2),'b*")

plot(x.y)

fori=1:x1
A = zeros(2,2):
A(1,:) = Classl(i,:)s

A(2,:) = [x(Classlindex(i)) y(Classlindex(i))];

plot(A(:,1),A(:,2),'b:")

end

fori=1:x2
A = zeros(2,2);
A(1,:) = Class?2(i,:)s

A(2,:) = [x(Class?index(i)) y(Class2index(i))]:

plot(A(:,1),A(:,2),'r:")
end
title('Sw = Identity Matrix : Classes are mixed up')

hold off

% HW2.Q2
% a) Classifier uisng the Neural Network

% D) Classifier using the Suppor Vector Machine

o°

HW2. Q2

o°

a) Classifier uisng the Neural Network

o°

b) Classifier using the Suppor Vector Machine

close all;

clear all:

%—— Initial Value Setup ——%

Dim?2 = 2

u2_1=1[380 400 I:

u2_2 = [400 360 I:

covar2_1 =[30020:; 20200 J;

covar2_2 =[15015;15250[;

outputlayer = 2: % the number of output layer
%—— Parameter Set up ———-%

N = input('Enter the number of total generating data(training & test) => ');
NT= input('Enter the number of training data =>"');

%The number of test data = N(total generation data) — NT(training data)

%— Generating training and test patterns using random gaussian generation
model.Mu = [uR_1'u2_2'];

model.C = zeros(Dim?2,Dim2,2);

model.C(:,:,1) = covar2_1;

model.C(:,:,2) = covar2_2:

model.P = [0.5, 0.5];

XClassl = mvnrnd(u?_1,covar?_1,N);

XClass? = mvnrnd(ul_2,covar?_2,N);

TrainPattern = [XClassl(1:NT,:)' XClass2(1:NT,:)' I
TrainLabel = [1*ones(1,NT), 2*ones(1,NT) 1:
TestPattern = [XClass1(NT+1:N,:)' XClass2(NT+1:N,:)'];
TrueClass = [1*ones(1,N—NT), 2*ones(1,N—-NT) I

%—— Bayesian decision rule : function call ——-%

PredictedClass_baydec = baydec(TestPattern, model):

24

)

%—— The accuracy of the results ———%

Error_Baydec = accuracy(PredictedClass_baydec, TrueClass)

% Trianing pattern setup
trn.X = TrainPattern:
trn.nanme = 'train';
trn.y = TrainLabel:
trn.dim = DimQR;

trn.num_data = NT:

hiddenlayer = input('Enter the number of hidden layer =>'); % choose # of hidden layer
num_iter = input('Enter the number of iteration ==>"'); % choose # of iteration for back-
propagation

nn_layer = [hiddenlayer, outputlayerl:

net = newff(minmax(TrainPattern), nn_layer, {'logsig’, 'logsig'}, 'trainbfg')

mu = [u2_1:u2_21:

sigma = [covar2_licovar’_2]:

net.performFcn = 'mse';

net.trainParam.epochs = 5:
net.trainParam.show = NaN:

net = init(net):

net = nnt_classify(net,trn,mu,sigma,num_iter);
out = sim(net,TestPattern);
[maxVal,PredictedClass_nn] = max(out);

Error_NeuralNetwork = accuracy(PredictedClass_nn,TrueClass)

25

Kernelarg = input('Enter Kernel Argument ==>");

Constant = input('Enter Regulation Constant ==>");

options.ker = 'rbf'; % use Gaussian Kernel

options.arg = Kernelargs; % kernel argument

options.C = Constant; % regularization constant

model = smo(trn,options): % SMO Sequential Minimal Optimization for binary SVM with

Ll-soft margin.

ppatterns(trn): % PPATTERNS Plots pattern as points in feature space.
psvm(model): %PSVM Plots decision boundary of binary SVM classifier.

PredictedClass_SVM = svmclass(TestPattern,model); $ SVMCLASS Support Vector Machines

Classifier.

Error_SVM = accuracy(PredictedClass_SVM, TrueClass)

function net = nnt_classify(net,trn,mu,sigma,num_iter)

rand('state’, 20032007):
randn('state’, 20032007):

% Now we draw the optimal classification borders
x_train = trn.X;

t_train = trn.y:

mul = mu(l,:):

mu? = mu(2,:);

sigmal = sigma(1:2,:);

sigma? = sigma(3:4,:);

[X,Y] = meshgrid(linspace(—4, 5, 200), linspace(—4, 10, 200));

diffl = ([X(:), Y(:)] — repmat(mul, length(X(:)), 1)):

diff2 = ([X(:), Y(:)] — repmat(mu?, length(X(:)), 1)):

pl =1/ sqrt(det(sigmal)) * exp(— sum(diffl * inv(sigmal) .» diffl, 2)):

pR = 1/ sqrt(det(sigma?)) * exp(— sum(diff2 * inv(sigma?) .*» diff2, 2));

26

p = [pl, p2l:

[maxVal, pIndex] = max(p');

pIndex = reshape(pIndex, sqrt(length(pIndex)) , sqrt(length(pIndex))):

% Plot the data

figure:

clf reset:

contourf(X, Y, pIndex):

hold on

gscatter(x_train(l,:), x_train(?, :), t_train, 'rb’, 'so')
clear('diffl', 'diff?’, 'diff3', 'pl', 'pR', 'p3', 'maxVal', 'pIndex');

pause(3):

% Create the target vector from the class indices

% We need a vector af the form [0 1 0]' for every class index.
T = full(ind2vec(t_train));

num = num_iters;

for i =1:num

% Train the network

% Here we have to supply the training input and target data (x_train, t_train).

[net.tr_2hul = train(net, x_train, T, [1,[1,[1,[1)

T_learned = sim(net, [X(:)'s ¥(:)']):

[maxVal, T_learned_index] = max(T_learned):

T_learned_index = reshape(T_learned_index, sqrt(length(T_learned_index)),

sqrt(length(T_learned_index)));

if (rem(i,50) == 0)
clf reset:
contourf(X, ¥, T_learned_index):
hold on
gscatter(x_train(1,:), x_train(2, :), t_train, 'rb’, 'so');
pause(l1);

end

27

info = sprintf('Iteration:%03d/%034d',i,num);
disp(info);

end

function model = smo(data, options, init_model)
% SMO Sequential Minimal Optimization for binary SVM with L1-soft margin.

)
)

% Synopsis:

o°

model = smo(data)

o°

model = smo(data, options)

o°

model = smo(data, options, init_model)

o°

\°

s Description:

o°

This function is implementation of the Sequential Minimal

o°

Optimizer (SMO) [Platt98] to train the binary Support Vector

o°

Machines Classifier with L1-soft margin.

o°

o°

Input:

\°

> data [struct] Binary labeled training vectors:

o°

X [dim x num_data] Training vectors.

o°

.y [a x num_data] Labels (1 or 2).

o°

\°

s options [struct] Control parameters:

o°

.Ker [string] Kernel identifier (default 'linear'):

o°

See 'help kernel'for more info.

o°

.arg [1 x nargs] Kernel argument(s) (default 1).

o°

.C Regularization constant (default C=inf). The constant C can

o°

be given as:

o°

C [1x1] .. for all data.

o°

C [1x2] .. for each class separately C=[C1,C2].

o°

C [1xnum_data] .. for each training vector separately.

o°

.eps [1x1] SMO paramater (default 0.001).

28

\°

s .tol [1x1] Tolerance of KKT—conditions (default 0.001).

o°

\°

s init_model [struct] Specifies initial model:

o°

.Alpha [num_data x 1] Initial model.

o°

.b [1x1] Bias.

\°

s If not given then it is set to zero by default.

o°

\°

s Output:

\°

s model [struct] Binary SVM classifier:

o°

.Alpha [nsv x 1] Weights (Lagrangians).

o°

.b [1x1] Bias.

o°

.sv.X [dim x nsv] Support vectors.

o°

.nsv [1x1] Number of Support Vectors.

o°

.kercnt [1x1] Number of kernel evaluations used by SMO.

o°

.trnerr [1x1] Training classification error.

o°

.margin [1x1] Margin of the found classifier.

o°

.cputime [1x1] Used CPU time in seconds.

o°

.options [struct] Copy of used options.

o°

\°

s Example:

o°

trn = load('riply_trn'):

o°

model = smo(trn,struct('ker’,'rbf','C',10,'arg",1));

o°

figure:; ppatterns(trn); psvm(model);

o°

tst = load('riply_tst');

o°

ypred = svmclass(tst.X, model);

o°

cerror(ypred, tst.y)

o°

% See also

% SVMCLASS, SVMLIGHT, SVMQUADPROG.

%

% About: Statistical Pattern Recognition Toolbox

% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac

% Czech Technical University Prague

% Faculty of Electrical Engineering

% Center for Machine Perception

% Modifications:
% 23—may—2004, VF

% 17—-September—2001, V. Franc, created

% timer

tics

% Input arguments

if nargin < 2, options =[]: else options=c2s(options): end
if ~isfield(options,'ker'), options.ker = 'linear'; end

if ~isfield(options,'arg'), options.arg = 1; end

if ~isfield(options,'C'), options.C = inf: end

if ~isfield(options,'eps'), options.eps = 0.001: end

if ~isfield(options,'tol'), options.tol = 0.001; end

[dim,num_datal = size(data.X):

if nargin < 3,
init_model.Alpha = zeros(num_data,l):
init_model.b = 0:

end

% run optimizer

[model.Alpha, model.b, model.nsv, model.kercnt, model.trnerr, model.margin]...
= smo_mex(data.X, data.y, options.ker, options.arg, options.C, ...

options.eps, options.tol, init_model.Alpha, init_model.b);

% set up output

inx = find(model.Alpha);
model.sv.X = data.X(:,inx);
model.sv.y = data.y(inx):
model.sv.inx = inx:

model.Alpha = model.Alpha(inx):

30

model.Alpha(find(model.sv.y == 2)) = —model.Alpha(find(model.sv.y == 2));

% computes normal vector of the hypeprlane if linear kernel used
if strcmpi(options.ker,'linear’),
model.W = model.sv.X*model.Alpha:

end

model.options = options:

model.fun = 'svmclass's

model.cputime = toc:

return;

96 __
% HW2.Q3

% a) Classifier uisng the Parzen window

% D) Classifier using the K—nearest neighbor

% c) Classifier the nearest neighbor

o°

close all;
clear all:
%—— Initial Value Setup ——%

Dim2 = 2:

u’2_1=1[380 4001
u’_2 =1[400 360 I:
covar2_1 =1[30020:202001I:

covar2_2 =[15015:15250[:

%—— Parameter Set up ————-%

if1
h = 1: % The width of parzen window for PARZEN WINDOW
k = 5 % The number of nearest neighbors for KNN

31

N =200: % The number of total training and test data(Classl—N, Class2—N)
NT =100: % The number of training data(Classl_NT, Class2—NT)

end

if 0
h = input('Enter the width of parzen window =>");
k = input('Enter the number of nearest neighbors for KNN => ');
N = input('Enter the number of total generating data(training & test) => ')
NT= input('Enter the number of training data =>"'):
%The number of test data = N(total generation data) — NT(training data)

end

%— Generating training and test patterns using random gaussian generation
model.Mu = [u2_1' u2_2'l:

model.C = zeros(Dim?2,Dim2,2);

model.C(:,:,1) = covar2_1;

model.C(:,:,2) = covar2_2:

model.P = [0.5, 0.5];

XClassl = mvnrnd(u?_l,covar?_1,N):

XClass? = mvnrnd(u?_2,covar?_2,N):

TrainPattern = [XClassl(1:NT,:)' XClass2(1:NT,:)']
TrainLabel = [1*ones(1,NT), 2*ones(1,NT) I;
TestPattern = [XClass1(NT+1:N,:)' XClass2(NT+1:N,:)']:
TrueClass = [1*ones(1,N—NT), 2*ones(1,N-NT) I;

%—— Bayesian decision rule : function call ——-%
PredictedClass_baydec = baydec(TestPattern, model):
%—— The accuracy of the results ———%

Error_Baydec = accuracy(PredictedClass_baydec, TrueClass)

32

h = input('Enter the width of parzen window =>');

PredictedClass_parzen = parzen(h,TrainPattern,TrainLabel,TestPattern);

Error_ParzenWindow = accuracy(PredictedClass_parzen, TrueClass)

k = input('Enter the number of nearest neighbors for KNN =>"');
PredictedClass_knn = knn(k,TrainPattern,TrainLabel,TestPattern):

Error_KNearestNeighbor = accuracy(PredictedClass_knn, TrueClass)

%—— Classifier using the nearest neighbor technique
Range = TrainPattern': %Range = [data_num dimension]
Range_min = min(Range);
x1_min = Range_min(1):

yl_min = Range_min(2):

Range_max = max(Range):
x1_max = Range_max(1);

yl_max = Range_max(2):

Range = TestPattern's %Range = [data_num dimension]
Range_min = min(Range):
x2_min = Range_min(1):

y2_min = Range_min(2):

Range_max = max(Range):
x2_max = Range_max(1);

y2_max = Range_max(2):

33

x_min = min(x1_min,x2_min);
x_max = max(xl_max,x2_max);
y_min = min(yl _min,y2_min);
y_max = min(yl_max,y2_max);

region5 = max(NT,(N—-NT)):

region = [x_min x_max y_min y_max];
region = [region region5]:

Nclasses = 2

D = nn(TrainPattern,TrainLabel, region);

[x y] = size(D):

[train_err, test_err] = calculate_error (D, TrainPattern, TrainLabel, TestPattern,TrueClass,
region, Nclasses):

%Err = (test_err(2) — train_err(2)):

Err = test_err(2);

if(Err < 0) Err = 0;

else Err = Err;

end

Error_TheNearestNeighbor = Err

%1. Dividing the given dataset into test data and trainning data
%2. Generate the covariance matrix with only diagonal elements for the

[

% gaussian distribution

% (Assuming there is no correlationin between the classes)
%3. Take a test sample

%4. Develop parzen window around all the trainning samples

%5. Find the combined probability at the test pattern for all the classes

%6. The class,which has maximum combined density at the test pattern, will
% Dbe assigned to the test pattern

%7. Select next test sample and repeat the steps form 3 through 6

function PredictedLabels = parzen(h,TrainPattern,TrainLabel,TestPattern)

%%% Parameters
[dimTrain,TrainHsize]=size(TrainPattern):
[dimTest,TestHsize]=size(TestPattern):

class = 2;

dim = dimTrain: % dimTrain = dimTest

hn = h / sqrt(TrainHsize) ;: % Refer to DHS page 168

Vn = hn"dim:

C = zeros(dim,dim);
for i=1:dim
for j = 1:dim
if(i == 3j) C(i,j) = hns
end
end

end

PredictedLabels = zeros(1,TestHsize):

Prob = zeros(class,TestHsize):

%%% Parzen window estimation
fori=1:TestHsize
for j =1: TrainHsize
nconst = 1/((2*pi)~(dim/2) * sqrt(det(C))):
Prob(TrainLabel(j),i) = Prob(TrainLabel(j),i) + nconst*exp(—0.5*(TestPattern(:,i)—
TrainPattern(:,j))'*inv(C)*(TestPattern(:,i)-TrainPattern(:,j)))
end

end

%%% Choose a class with larger prob. between classland class?

[value, PredictedLabels] = max(Prob):

return;

% Determines distaces of all TrainPattern points from TestPattern points

% Outputs associated with nearest TrainPattern points

function PredictedLabels = knn(k,TrainPattern,TrainLabel,TestPattern)

%%% Parameters
[dimTrain,TrainHsize]=size(TrainPattern):
[dimTest,TestHsize]=size(TestPattern):
class = 2;

dim = dimTrain; % dimTrain = dimTest

PredictedLabels = zeros(1,TestHsize):

sqdist = zeros(1,TrainHsize);

%%% Parzen window estimation
fori=1:TestHsize
for j =1: TrainHsize
sqgdist(1,3) = sum((TestPattern(:,i) — TrainPattern(:,j))."2):
end
[tmp index] = sort(sqdist):
labels = TrainLabel(index(1:k)):
PredictedLabels(l,i) = round(mean(labels)):
end

return;

o°

train_features - Train features

o°

train_targets - Train targets

o°

Unused - Unused

36

% region - Decision region vector: [—x x —y y number_of_points]

function D = nn(train_features, train_targets,region)

% Construct the Voronoi region of the data

D =voronoi_regions(train_features,region):

mark = zeros(l,size(train_features,2)):
for i = 1:size(train_features,?),
%For each prototype Xj, find the Voronoi neighbors of Xj

[x.,y] = find(D==i):

if ~isempty(x),
%x and y are the locations of the Voronoi region for the i—th prototype
%These can be used to find the Voronoi neighbors
around = [x-1x+lxxiyyy—-1ly+ll:
indices= find((around(:,1)>0) & (around(:,2)<=region(5)) & (around(:,2)>0) &
(around(:,2)<=region(5))):

around = around(indices,:);

neighbors = zeros(1,size(around,1)):
for j = l:length(neighbors),

neighbors(j) = D(around(j,1),around(j,2)):
end

neighbors = unique(neighbors);

%If any neighbor is not from the same class, mark the i—th prototype
if (length(unique(train_targets(neighbors))) > 1),
mark(i) = 1;
end
end

end

%Discard all unmarked points

prototypes = find(mark ==1);

37

if isempty(prototypes)

error('No prototypes found')
else

D = nearest_neighbor(train_features(:,prototypes),train_targets(prototypes),1,region):
end

return;

function D = voronoi_regions(features, region)

% Make a Voronoi diagram from sample points

% Inputs:

o°

features — Input data features

o°

targets — Input data targets

o°

region - Decision region vector: [-x x —y y number_of_points]

N = region(5):

X = linspace (region(l),region(2),N):
y = linspace (region(3),region(4),N);
D = zeros(N);

[r,c] = size(features):

y_dist = (ones(N,1) » features(2,:) — y'*ones(1,c)).”2:
for i = 1:N,

x_dist = ones(N,1) * (features(l,:)-x(i)).”2:

dist = abs(x_dist + y_dist):

[sorted_dist, indices] = min(dist'):

D(:,i) = indices(1,:)"
end

return;

38

	Question 1.

