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1. Fisher’s Linear Discriminant Analysis 
We would like to find a projection from nR  to 1R  , such that we can maximize the 
separation between 2 classes. 
We define the cost function, 
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The solution was found to be  1
1 2( )fisher ww S m m−= −

If we choose the cost function as  
( ) T

BJ w w S w=  
The solution is  1 2( )meandiffw m= −
I’d like to investigate this problem with 2 Gaussian distributions with dimension 2. 
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Each class contains 1000 data points.  
The distribution of 2 data  
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Figure 1: Scatter plot of 2 data with different mean can covariance. Class 1 is labeled 
with red circle. Class 2 is labeled with blue cross.  
 
In order to compare 2 projections fairly, fisherw  and  are normalized with norm 
equal to 1. 

meandiffw
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The projected data would be , which is in wx 1R . 
The histogram of the projected data when I use fisherw . 
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Figure 2: The histograms of 2 projected data. 
 
Since it’s hard to do the comparison in histogram, I use kernel density estimation to 
estimate the density for 2 classes. 
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Figure 3: The estimated density for the projected data by using fisherw . 
 
The density of the projected data when I use  for projection is plotted in Figure 4. meandiffw
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Figure 4: The estimated density for the projected data by using .The gray area is 
the misclassification area, which is called the area of error. 

meandiffw

 
In order to compare which projection performs better, I define the Area of error which is 
the shaded area in Figure 4. The smaller the Area of error gives the better separation. 
 
Table 1: Comparison between the areas of error for 2 different kind of projections. 
 Project onto fisherw  Project onto  meandiffw
Area of error 0.2569 0.3417 
I compute the area by using Simpson’s quadrature rule. (a kind of numerical integration) 
 
Furthermore, I design the dataset which shows the  really can help us find the best 
separation hyperplane. 
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The distribution of 2 data 
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Figure 5: Scatter plot of 2 data with different mean can covariance. Class 1 is labeled 
with red circle. Class 2 is labeled with blue cross.  
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Project onto fisherw  Project onto  meandiffw
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Area of error : 0.0275 Area of error : 0.3272 
Figure 6: The estimated density for the projected data by using fisherw is on the left panel. 
The estimated density for the projected data by using is on the right panel. meandiffw
 
From above 2 examples, I know that  can give us better separation. 
This also considers the within class scatter matrix. If the data for one class is thinner in 
one direction than the other direction, we should include this information to help us to get 
better separable projection. 

1
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2. Neural Network and Support Vector Machine 
I download breast cancer wisconsin data set from UCI machine learning repository. 
http://archive.ics.uci.edu/ml/
The description of the attributes are as follows: 
  #  Attribute                     Domain 
   -- ----------------------------------------- 
   1. Sample code number            id number 
   2. Clump Thickness               1 - 10 
   3. Uniformity of Cell Size       1 - 10 
   4. Uniformity of Cell Shape      1 - 10 
   5. Marginal Adhesion             1 - 10 
   6. Single Epithelial Cell Size   1 - 10 
   7. Bare Nuclei                   1 - 10 
   8. Bland Chromatin               1 - 10 
   9. Normal Nucleoli               1 - 10 
  10. Mitoses                       1 - 10 
  11. Class:                        (2 for benign, 4 for malignant) 
Class distribution: 
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   Benign: 458 (65.5%) 
   Malignant: 241 (34.5%) 
I randomly pick half for training and the remaining for testing. 
 
a) In matlab, there is a neural network toolbox.  
net=newff(minmax([train_input']),[10 10 1],{'tansig' 'tansig' 
'tansig'},'traingd'); 
This routine ‘newff’ can create a feed-forward back propagation network. I use only one 
hidden layer. The input is a 1x10 vector and the output is a single value which should be 
between 0 and 1. At each neuron, after summing the input, the output is passed through a 
hyperbolic tangent sigmoid transfer function.  

 
Figure 7: The hyperbolic tangent sigmoid transfer function. 
 
The adjustment of each weight vector is done by using the gradient descent algorithm. In 
my design, I choose the learning rate η  equal to 0.01. 
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net.trainParam.show = 5; 
net.trainParam.lr = 0.01; 
net.trainParam.epochs = 100; 
net.trainParam.goal = 1e-2; 
[net,tr]=train(net,train_input',train_output'); 
In order not to overfit the classifier, the stopping criteria is that either it is trained with 
100 epochs or the error between the true output and the predicted output is less than 0.01. 
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Figure 8: The training error becomes smaller when we keep training. 
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This is a classification problem. The output of the classifier is between 0 and 1. I set a 
threshold which is 0.5. If the output is greater than 0.5, I say this sample belongs to class1. 
If the output is less than 0.5, I say this sample belongs to class2. 
I tried the experiment with 5 times. Due to the random initialization of the weight, the 
classification accuracy is different each time. 
 
Table2: Each run, the weights are randomly initialized. The training accuracy and the 
testing accuracy are different for each run. 
Run 1 2 3 4 5 
Training accuracy 0.6923 0.6923 0.6503 0.6993 0.7133 
Testing accuracy 0.6434 0.7343 0.6573 0.6573 0.6923 
 
b) I use SVMlight which is downloaded from the website. 
http://svmlight.joachims.org/
In the coding, we can define the parameters or choose the kernel function by ourselves. 
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Here, I set C=1. ‘Kernel’ means what type of kernel function we choose. 
net = svml('file_SVM00.txt','Kernel',0,'C',1);  
net = svmltrain(net,train_input,train_output_);  
pred_Ytr = svmlfwd(net,train_input);  
 
Because the output of SVM is either 1 or -1, I need to convert the original training output 
{0,1} to {-1,1}. After the training, we can do the testing by using ‘svmlfwd’. The output 
is the continuous value. I set the threshold equal to 0. When the output is less than 0, I 
label the output as 0. When the output is greater than 0, I label the output as 1. 
The training accuracy is 70.63% and the testing accuracy is 69.93%.  
 
c) Comparison between neural network and support vector machine 
Neural Network 
At each node, we sum the Tx w  of previous layer, and then apply by the sigmoid function 
and transmit this number to the next node. We use back propagation to update the weight. 
It learns from examples just like a human being learns new things. 
Pros: 

• The idea is heuristic. The machine is learning from the error and updating its 
weight. 

• It is good at function approximation. 
Cons: 

• Each time, we might get different neural network due to the random initialization 
of the weights. This may affect the testing accuracy a lot. 

• We need to pick the learning rate training cycles.  
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Support vector machine 
For linear kernel function, we are trying to find the best linear hyperplane which 
separates 2 classes. 
Pros:  

• Given the training data, we can generate only one SVM. There is the optimization 
to get better separation hyperplane. 

• After training, it only remembers the support vectors which are on the boundary 
plane 1 and -1. 

Cons: 
• When the problem is hard to solve, it may take longer training time. 
• Selection of C and the parameters of the Kernel is a tricky issue. 

 
3. Parzen Window and nearest neighbor 
a) Parzen window 
We assign class j to the sample 0x , when 
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where total number of samples,  Nt =
            V is the volume. 
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  In 2D, we have the normal Gaussian distribution. I assume Xσ σ= . Mean =[0 0]T
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There I choose the normal Gaussian as my window function. 
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Table 3: The classification accuracy of Parzen window varies with different h. 
h 0.1 0.5 1 2 
Training accuracy 0.7063 0.7063 0.7063 0.7063 
Testing accuracy 0.6014 0.6643 0.6713 0.6993 
 
b) K- nearest neighbor 
In order to not have the tie vote, I only use the odd number for k. I assign the category to 
the testing sample based on majority of of k nearest neighbors. 
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Table 4: The classification accuracy of k nearest neighbor varies with different k. 
k 3 5 7 9 11 13 
Training accuracy 0.8462 0.7972 0.7483 0.7343 0.6853 0.6853 
Testing accuracy 0.6224 0.6364 0.6014 0.6643 0.7133 0.7063 
 
c) Nearest neighbor 
When k is 1, it is nearest neighbor method.  
Table 5: The classification accuracy of nearest neighbor. 
Training accuracy 1 
Testing accuracy 0.5944 
 
d) Comparison of these 3 methods 
Both Parzen window and k nearest neighbor require us to choose the parameter.  
We can notice that the training accuracies of Parzen window classifier are the same. The 
highest testing accuracy for Parzen window is obtained when we enlarge h which means 
we make the volume larger.  
The highest testing accuracy for k nearest neighbor is obtained when k equal to 11. The 
optimal k might be different for other datasets.   
Nearest neighbor can get 100% training accuracy, but this is sort of over fitting. The 
testing accuracy is the worst among these 3 methods.
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Appendix 
 
%question 1 
%Comparison between w for Fisher's Linear Discrimant and w for (m1-m2) 
  
n=2;%I choose dimension=2 
N=1000;% N points for class 1, and N points for class 2 
  
mu1=[0 0 ]; 
cov1=[1 0.9 ;0.9 1]; 
mu2=[2 0 ]; 
cov2=[1 0.9 ;0.9 1]; 
     
[x1,x2]=gen_multi_gauss(mu1,cov1,mu2,cov2,N); 
  
figure(1); 
scatter(x1(:,1),x1(:,2),'or') 
hold on; 
scatter(x2(:,1),x2(:,2),'xb') 
hold off; 
  
m1=mean(x1); 
m2=mean(x2); 
S1=(x1-ones(N,1)*m1)'*(x1-ones(N,1)*m1); 
S2=(x2-ones(N,1)*m2)'*(x2-ones(N,1)*m2); 
w=pinv(S1+S2)*(m1-m2)'; 
w_fisher=w/norm(w); 
x1_fisher=x1*w_fisher; 
x2_fisher=x2*w_fisher; 
  
x_axis=linspace(-6,4,200); 
  
figure(2); 
hist(x1_fisher,x_axis)  
figure(3); 
hist(x2_fisher,x_axis)  
  
figure(4); 
y1_fisher = ksdensity(x1_fisher,x_axis);  
y2_fisher = ksdensity(x2_fisher,x_axis);  
plot(x_axis,y1_fisher,'r.',x_axis,y2_fisher,'b-') 
  
error_area=simpson_quad(x_axis,min([y1_fisher;y2_fisher])) 
  
w=(m1-m2)'; 
w_meandiff=w/norm(w); 
x1_meandiff=x1*w_meandiff; 
x2_meandiff=x2*w_meandiff; 
  
x_axis=linspace(-6,4,200); 
  
figure(5); 
hist(x1_meandiff,x_axis)  
figure(6); 
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hist(x2_meandiff,x_axis)  
  
figure(7); 
y1_meandiff = ksdensity(x1_meandiff,x_axis);  
y2_meandiff = ksdensity(x2_meandiff,x_axis);  
plot(x_axis,y1_meandiff,'r.',x_axis,y2_meandiff,'b-') 
  
error_area=simpson_quad(x_axis,min([y1_meandiff;y2_meandiff])) 
  
function [ output_integration ] = simpson_quad( x,f ) 
%simpson_quad for calculating the area under the curve 
%Assume h is equal between any 2 points 
integral=f(1)+f(end); 
  
for i=2:size(f,2)-1 
    if mod(i,2)==0 
        integral=integral+4*f(i); 
    else 
        integral=integral+2*f(i); 
   nd  e
end 
  
output_integration=integral*(x(2)-x(1))/3; 
 
  
%question 2 
load('dataset.mat'); 
  
train_input=traindata(:,2:end); 
test_input=testdata(:,2:end); 
train_output=traindata(:,1); 
test_output=testdata(:,1); 
  
%Use Matlab Neural Network Toolbox 
net=newff(minmax([train_input']),[10 10 1],{'tansig' 'tansig' 
'tansig'},'traingd'); 
net.trainParam.show = 5; 
net.trainParam.lr = 0.01; 
net.trainParam.epochs = 100; 
net.trainParam.goal = 1e-2; 
[net,tr]=train(net,train_input',train_output'); 
  
%Evaluate the training error 
out_tr= sim(net,train_input'); 
pred_train=(sign(out_tr'-0.5)+1)/2; 
tr_err=sum(abs(pred_train-train_output))/size(train_output,1); 
tr_acc=1-tr_err; 
  
%Evaluate the testing error 
out_te= sim(net,test_input'); 
pred_test=(sign(out_te'-0.5)+1)/2; 
te_err=sum(abs(pred_test-test_output))/size(test_output,1); 
te_acc=1-te_err; 
result=[tr_acc te_acc]' 
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%(b)Use SVM light 
net = svml(sprintf('file_SVM00.txt'),'Kernel',0,'C',1);  
%net = svml(sprintf('file_SVM00.txt'),'Kernel',2,'KernelParam',1,'C',1);  
  
train_output_=sign(train_output-0.5); 
net = svmltrain(net,train_input,train_output_);  
pred_Ytr = svmlfwd(net,train_input);  
  
greater_index = pred_Ytr>0; 
pred_Ytr(greater_index)=1; 
pred_Ytr(~greater_index)=-1; 
%Calculate correction rate 
err_rate=sum(abs(train_output_-pred_Ytr)/2)/size(pred_Ytr,1); 
correct_rate_training=1-err_rate 
  
test_output_=sign(test_output-0.5); 
pred_Yte = svmlfwd(net,test_input);  
  
greater_index = pred_Yte>0; 
pred_Yte(greater_index)=1; 
pred_Yte(~greater_index)=-1; 
%Calculate correction rate 
err_rate=sum(abs(test_output_-pred_Yte)/2)/size(pred_Yte,1); 
correct_rate_testing=1-err_rate 
  
%question 3 
%Use Parzen Window, K-nearest neighbor, nearest neighbor 
  
load('dataset.mat'); 
  
train_input=traindata(:,2:end); 
test_input=testdata(:,2:end); 
train_output=traindata(:,1); 
test_output=testdata(:,1); 
  
[COEFF, latent] = pcacov(train_input); 
train_input2D=train_input*COEFF; 
train_input2D=train_input2D(:,1:2); 
test_input2D=test_input*COEFF; 
test_input2D=test_input2D(:,1:2); 
  
x1=train_input2D(train_output==0,:); 
x2=train_input2D(train_output==1,:); 
  
figure(1); 
scatter(x1(:,1),x1(:,2),'or') 
hold on; 
scatter(x2(:,1),x2(:,2),'xb') 
hold off; 
  
%(a)Parzen Window method 
pred_train=zeros(size(train_output,1),1); 
h=2; 
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for i=1:size(train_input2D,1) 
    P1=0; 
    for j=1:size(x1,1) 
        P1=P1+window_fx(x1(j,:),train_input2D(i,:),h); 
    end 
    P2=0; 
    for j=1:size(x2,1) 
        P2=P2+window_fx(x2(j,:),train_input2D(i,:),h); 
    end 
    if P2>P1 
        pred_test(i)=1; 
    end 
end 
tr_err=sum(abs(pred_train-train_output))/size(train_output,1); 
tr_acc=1-tr_err 
  
pred_test=zeros(size(test_output,1),1); 
for i=1:size(test_input2D,1) 
    P1=0; 
    for j=1:size(x1,1) 
        P1=P1+window_fx(x1(j,:),test_input2D(i,:),h); 
    end 
    P2=0; 
    for j=1:size(x2,1) 
        P2=P2+window_fx(x2(j,:),test_input2D(i,:),h); 
    end 
    if P2>P1 
        pred_test(i)=1; 
    end 
end 
te_err=sum(abs(pred_test-test_output))/size(test_output,1); 
te_acc=1-te_err 
  
%(b)K nearest nighbor, when k=1 => nearest neighbor 
pred_train=zeros(size(train_output,1),1); 
k=13; 
for i=1:size(train_input2D,1) 
    dist_to_train=zeros(size(train_input2D,1),1); 
    for j=1:size(train_input2D,1) 
        dist_to_train(j)=norm(train_input2D(i,:)-train_input2D(j,:)); 
    end 
    [B,idx] = sort(dist_to_train,'ascend'); 
    pred=0; 
    for j=1:k 
        pred=pred+train_output(idx(j)); 
    end 
    if pred>k*0.5 
        pred_train(i)=1; 
   nd  e
end 
tr_err=sum(abs(pred_train-train_output))/size(train_output,1); 
tr_acc=1-tr_err 
  
pred_test=zeros(size(test_output,1),1); 
for i=1:size(test_input2D,1) 
    dist_to_train=zeros(size(train_input2D,1),1); 

 13



    for j=1:size(train_input2D,1) 
        dist_to_train(j)=norm(test_input2D(i,:)-train_input2D(j,:)); 
    end 
    [B,idx] = sort(dist_to_train,'ascend'); 
    pred=0; 
    for j=1:k 
        pred=pred+train_output(idx(j)); 
    end 
    if pred>k*0.5 
        pred_test(i)=1; 
   nd  e
end 
te_err=sum(abs(pred_test-test_output))/size(test_output,1); 
te_acc=1-te_err 
 
function output = window_fx( x,y,h) 
%Assume window function is 2D normal Gaussian distribution 
output=(1/(2*pi*h^2))*exp(-(norm(x-y)^2)/(2*(h^2))); 
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