
ECE 662 Spring 2008

Homework 2 Report

April 16, 2008

1 Problem 1

In the Parametric Method section of the course, we learned how to draw a separation hyperplane

between two classes by obtaining wopt, the argmax of the cost function J(w) = w
T SBw

wT SW w
. The

solution was found to be wopt = S−1
W (m1 − m2), where m1 and m2 are the sample means of each

class, respectively. Some students raised the question: can one simply use J(w) = w
T SBw instead

(i.e. setting SW as the identity matrix in the solution wopt)? Investigate this question by numerical
experimentation.

1.1 Methodology

In this problem, we wish to compare the classi�cation ability of the linear separating hyperplanes
obtained by optimizing two di�erent cost functions. The separating hyperplanes are to be used
for two-class classi�cation problem. One cost function simultaneously maximizes the between-class
variance and minimizes the within-class variance for the two classes. This is the Fisher's Linear Dis-
criminant (FLD) cost function. The other cost function just maximizes the between-class variance.
For this problem, we have used a real dataset titled 'Pen-Based Recognition of Handwritten Digits'
that was obtained from UCI Machine Learning repository [1]. The dataset is divided into a training
set (7494 instances) and testing set (3498 instances). The dataset is described by 16 features, each
of which are integers in the range 0-100. Based on the features, the dataset has been divided into
10 classes (class label 1-10). Since our problem is related to linear discriminant functions, we want
a 2-class dataset that is approximately linearly separable. We investigated the dataset and found
that for classes 1 and 4, the features 1 and 8 are approximately linearly separable in 2D and the
features 1, 8 and 15 are approximately linearly separable in 3D (Figure 1(a) and (b)). Classes 1
and 4 have 780 and 719 training instances and 363 and 336 testing instances respectively.

First we considered the 2D case. We calculated the overall scatter matrix as

SW =
∑

xǫC1

(x − m1)(x − m1)
T +

∑

xǫC2

(x − m2)(x − m2)
T

and the projection direction as wopt = S−1
W (m1 −m2). m1 and m2 are the means of training data

from the two classes. Optimizing the FLD cost function gives us the optimal weight vector but in
order to derive the discriminant function (wT

x + w0), we also need the bias term w0. For this,
we posed the FLD problem as a linear least squares problem (see [2] Section 4.1.5) and obtained
an expression for the bias of the form w0 = −w

T
optm where m is the mean of the total training

dataset, given by

m =
1

N

N
∑

n=1

xn =
1

N
(N1m1 + N2m2)

1

1.2 Results and Discussion

Figure 2(a) shows the wopt (black line) and the separating hyperplane (magenta line) that are ob-
tained by optimizing the FLD cost function. From the �gure, it is apparent that this wopt is infact
a good choice for maximizing the between-class variance and minimizing the within-class scatter
for the two classes. When we do not include the within-class scatter in the cost function, we are
e�ectively setting SW to identity matrix and in this case, wopt is simply (m1−m2) i.e. the optimal
weight vector is along the line joining the two class means. For this case, the weight vector wopt

and the separating hyperplane are shown in Figure 2(b). We refer to these as di�erence-of-mean
weight vector and di�erence-of-mean hyperplane. From the �gure, we can tell that in general these
are not the best choices for the optimal weight vector and the separating hyperplane.

Interestingly enough, when we used these hyperplanes to classify the test data from the two classes,
the results were a little counter intuitive. The di�erence-of-mean hyperplane performed slightly bet-
ter than the FLD hyperplane. The numerical results are summarized in table 1. We had anticipated
that FLD classi�er will perform better than the di�erence-of-means classi�er. The unexpected re-
sult may be due to the particular distributions of the two classes. We can de�nitely construct two
class distributions where the FLD classi�er performs better than the di�erence-of-means classi�er.
We demonstrate such a case later in our report. For right now, we proceed with discussing the
performance comparison between the two classi�ers on 3D dataset.

For the 3D case, we obtain wopt and w0 for both types of classi�ers, similarly to the 2D case.
Figures 3 (a) and (b) show the weight vector wopt and the separating hyperplanes for the two
classi�ers. In 3D also, the di�erence-of-means classi�er performs better than the FLD classi�er as
is apparent from table 2.

A little earlier in our report, we had commented that in general we expect FLD classi�er to perform
superior to the di�erence-of-means classi�er. The reason is that FLD cost function simultaneously
optimizes two di�erent criteria (maximize between-class variance and minimize within-class vari-
ance) which is more logical. But there may be some data distributions for which the latter performs
better. This is precisely the case with our selected real dataset. On the other hand, we can show
that there exist data distributions for which FLD classi�er will perform better. One such example
is shown in �gure 4(a) and (b), where we have shown the FLD classi�er and di�erence-of-mean
classi�er results for 2 class Gaussian distributions. The means of the Gaussian distributions are
horizontally displaced from each other and their axes of maximum variance are parallel to each other
and inclined at an angle with the horizontal. From the numbers in table 3, we observes that FLD
gives perfect classi�cation (100% accuracy) for this dataset while di�erence-of-mean classi�er yields
95.8% accuracy. From this exercise, we learned a good lesson that it is better to use real life

datasets to gauge the performance of di�erent classi�ers because an arti�cial dataset

can always be generated to con�rm the preconceptions that we may have regarding

the relative classi�cation abilities of di�erent techniques.

2

(a) Scatter plot of features 1 and 8 (b) Scatter plot of features 1, 8 and 15

Figure 1: Input data from 2 classes. The classes are nearly linearly separable in 2D as well as 3D

(a) (b)

Figure 2: Classi�cation results in 2D

(a) (b)

Figure 3: Classi�cation results in 3D

3

Fisher's Linear Discriminant Di�erence-of-Means

Test vectors 699 699
Misclassi�cations 29 22

% Classi�cation Accuracy 95.85 96.85

Table 1: Classi�cation accuracy comparison in 2D

Fisher's Linear Discriminant Di�erence-of-Means

Test vectors 699 699
Misclassi�cations 24 13

% Classi�cation Accuracy 96.57 98.14

Table 2: Classi�cation accuracy comparison in 3D

(a) (b)

Figure 4: Classi�cation results in 2D for Gaussian class distribution

Fisher's Linear Discriminant Di�erence-of-Means

Test vectors 1000 1000
Misclassi�cations 0 42

% Classi�cation Accuracy 100 95.8

Table 3: Classi�cation accuracy comparison in 2D for Gaussian class distribution

4

2 Problem 2

In this problem we had to experiment with designing a classi�er using neural network and support
vector machine approaches and then compare the two.

2.1 Methodology

We considered a 2-class classi�cation problem and used the same two classes as in problem 1. For
the neural network classi�cation, we used the MATLAB Neural Network toolbox. In particular,
we used 3 MATLAB functions: newff, train and sim, whose functionalities are brie�y explained
below:

• newff - create the neural network by specifying the number of hidden layers, number of
neurons in each hidden layer and the transfer functions to be used in each layer. The number
of neurons in the output layer is automatically determined from the target vector.

• train - train the neural network using the training data.

• sim - classify the testing data using the trained network.

In our experiments, we designed 3 neural networks. We call them NN1, NN2 and NN3. We
speci�ed the number of layers as follows:

1. NN1 had 1 hidden layer with 5 neurons and 1 output layer with 1 neuron.

2. NN2 had 2 hidden layers with 5 neurons each and 1 output layer with 1 neuron.

3. NN3 had 3 hidden layers with 5, 10 and 5 neurons respectively and 1 output layer with 1
neuron.

Note that each network has only 1 neuron in the output layer since we want the network output
to be class labels which are single integers. The transfer function was chosen as arctan() for the
hidden layers and linear for output layer. In our experiments, we were using the class labels '1' and
'4'. Since the output of network was a real number for every test vector, we thresholded the output
as:

ClassLabel =

{

1 network output 6 2.5

4 network output > 2.5

Since our dataset has 16 features for the 2 classes, we tried to classify the data with the neural net-
work approach by varying the number of features and evaluate which con�guration of the network
and how many features resulted is a good classi�cations accuracy.

For the SVM approach, we used the LIBSVM software v2.85 [3] which is a command line tool
for SVM classi�cation. The source code is available in C++ and Java and the software has inter-
faces for MATLAB, R, Python and so on. We used the C++ binaries for running our experiments.
The software also comes with 'A Practical Guide to Support Vector Classi�cation' which suggests
some easy but signi�cant steps to get good SVM classi�cation on our data.

In order to understand some of the parameters used in our experiments, we delve brie�y into
the theory behind SVM. The goal of SVM is to produce a model which predicts target value of data
instances in the testing set, when only the features are known. Given a training set of instance-label
pairs (xi, yi), i = 1, . . . , N where xi ∈ Rn and y ∈ {−1, 1}

N
, the support vector machines (SVM)

require the solution of the following optimization problem:

5

min
w,b,ξ

1

2
w

T
w + C

N
∑

i=1

ξi

subject to yi

(

w
T φ (xi) + b

)

> 1 − ξi

ξi > 0

Here training vectors xi are mapped into a higher (maybe in�nite) dimensional space by the
function φ. Then SVM �nds a linear separating hyperplane with the maximal margin in this
higher dimensional space. C > 0 is the penalty parameter of the error term. Furthermore,
K(xi,xj) = φ(xi)

T φ(xj) is called the kernel function.

The procedure suggested in this software was as follows:

1. Conduct simple scaling of the data. The main advantage is to avoid features in greater numeric
ranges dominate those in smaller numeric ranges. Another advantage is to avoid numerical
di�culties during the calculation. Since all our feature values were integers in the range 0 to
100, we scaled that data to 0-1 range.

2. Consider the Radial Basis Function (RBF) kernel K (x,y) = e−γ‖x−y‖2

3. Use cross-validation to �nd the best parameters C and γ

4. Use the best parameters C and γ to train the whole training set

5. Test on the testing data

2.2 Results and Discussion

Table 4 summarizes the numerical classi�cation accuracy percentages for the 3 neural networks when
the number of features were varied from 1 to 16. In table 5, we present the results of SVM training
and testing. The software �nds the best values of C and γ and evaluates the 5-fold cross validation
accuracy for training set classi�cation. Then this (C, γ) pair is used on the testing data. Figure 5
depicts the performance comparison between the neural network and SVM approaches. From the
�gure, we can make several observations. First is that the data is not well separated in the �rst 2
dimensions because both neural network and SVM give ∼65% and ∼75% accuracy when using only
the �rst or �rst two dimensions for classi�cation. Starting from 3 features onwards, both types of
classi�ers give &96% accuracy. So we do not need to use all 16 features for classi�cation. The �rst
3-5 features should be su�cient. We also note that NN1, NN2 and SVM have relatively similar
performances while NN3 performs inferior to them. This suggests that increasing the number of
hidden layers or the number of neurons in a hidden layer may not necessarily improve performance.

6

#Features NN1 NN2 NN3

1 63.23 62.52 61.66
2 75.54 75.68 74.96
3 97 98 95.57
4 95.71 97 95.71
5 99.71 99.57 89.41
6 97 99 98.43
7 99.86 99.57 97.42
8 98.43 99.57 98
9 99.71 98.86 98.43
10 100 99.86 75.82
11 99.86 99.28 98.86
12 97.85 96.71 99.86
13 99.71 97.85 98
14 99.86 98.14 97.85
15 99.86 99.86 97.57
16 99.28 99 98.57

Table 4: Classi�cation accuracy percentages for Neural Network approach

#Features Best C Best γ Cross Validation Accuracy (%) Accuracy on test data (%)

1 2048 0.5 59.31 63.23
2 8 8 74.85 75.39
3 0.13 8 97.87 98.43
4 8192 0.13 99.6 97.57
5 2 0.01 99.87 99
6 0.03 8 99.87 99.57
7 0.03 8 99.93 99.57
8 0.03 8 100 99.57
9 0.03 8 99.93 99.57
10 0.5 8 100 99.71
11 0.13 2 100 99.86
12 0.03 2 100 99.86
13 0.03 2 100 99.86
14 0.03 2 100 99.86
15 0.13 0.01 99.93 97.14
16 0.13 0.01 99.93 97.57

Table 5: Classi�cation accuracy for SVM approach

7

Figure 5: Classi�cation Accuracy comparison for Neural networks and SVM

3 Problem 3

In this problem we had to design classi�ers using Parzen window, K-nearest neighbour and nearest
neighbour techniques and then compare the three approaches.

3.1 Methodology

For this problem, I implemented the classi�ers in MATLAB. The dataset used was same as for
problem 2. For Parzen window technique, I used a Gaussian kernel. The probability that a given
test point x belongs to class Ci was calculated as:

p (x|Ci) =
1

N i

Ni

∑

j=1

Khi
(x − x

i
j)

where K(.) de�nes the Gaussian kernel: KΣ(x − xj) = 1

(2π)
n

2 |Σ|
1

2

exp
(

− 1
2 (x − xj)

T Σ−1(x − xj)
)

.

The parameter hi depends on the number of samples in class Ci and is given by hi = h√
Ni

where

N i is the number of samples in Ci. h is a proportionality constant depending on the range of input
data. Since our datapoints were in the range 0-100, we found out by simple calculation that h=1200
is a good value to use for our case. For the 2-class problem, we computed p (x|C1) and p (x|C2)
and assigned the labels as:

PredictedClassLabel =

{

1 p (x|C1) > p (x|C2)

4 p (x|C1) < p (x|C2)

The nearest neighbour technique was implemented as a special case of k-nearest neighbours tech-
nique for k = 1. For any test point, we considered its k nearest neighbours and depending on which
class had majority of neighbouring points, that class label was assigned to the test point. Ties were
avoided by choosing k to be odd. The performance of these classi�ers was evaluated on the dataset
by varying the number of features from 1 to 16 and recording the classi�cation accuracy.

3.2 Results and Discussion

Table 6 gives the numerical classi�cation results for Parzen window, Nearest neighbour and K-
nearest neighbour methods where for the last method, values of k equal to 5 and 9 were used.
Figure 6 presents the same results in graphical form for visual comparison. From the �gure, we can
deduce that for 3 or more features, the k-nearest neighbour technique has the best performance and

8

the nearest neighbour technique is closely second to it. Parzen window method consistently performs
the lowest among the three methods. For 1 and 2 features, the two classes are highly overlapping
and so it is di�cult to assess the relative performance of the classi�ers using only these two features.

Since we used density estimation for the Parzen window estimator, for demonstration purposes,
we present in �gure 7, the estimated densities for the two classes based only on feature 8. This
feature was chosen simply to show how the density estimation leads to classi�cation, because the
two classes were well separated in this feature.

#Features Parzen window Nearest neighbour KNN (k=5) KNN (k=9)

1 56.94 51.93 51.93 51.65
2 58.94 63.66 71.24 73.25
3 94.13 97 97.28 96.85
4 93.42 97.71 97.28 97.14
5 97.14 99.57 99.57 99.43
6 96.71 99.57 99.57 99.28
7 97.71 99.57 99.57 99.57
8 97.57 99.57 99.57 99.43
9 98.14 99.57 99.86 99.86
10 98.43 99.57 99.71 99.57
11 98.43 99.57 99.57 99.57
12 98.43 99.57 99.71 99.71
13 98.71 99.57 99.71 99.71
14 98.43 99.57 99.71 99.71
15 99.28 99.71 99.71 99.71
16 99.71 99.71 99.86 99.86

Table 6: Classi�cation accuracy percentages for non-parametric techniques

Figure 6: Classi�cation accuracy comparison for Parzen window, nearest neighbour and k-nearest
neighbour approaches

9

Figure 7: Density estimation on feature# 8 of the dataset

4 Comparing all the classi�ers

In problem 1, we compared the performance of Fisher's linear discriminant and di�erence-of-means
classi�ers on 2- and 3-dimensional data which was approximately linearly separable. We performed
more experiments to investigate how do the other classi�ers perform on the same data.

4.1 Methodology

The di�erent classi�ers that were used for this experiment were Fisher's Linear Discriminant,
Di�erence-of-Means, Neural Network (1 hidden layer with 5 neurons), SVM, Parzen Window,
Nearest Neighbour and k-Nearest Neighbour (k=5,9). Table 7 presents the numerical classi�ca-
tion accuracy percentages for these classi�ers, on 2- and 3-dimensional datasets and �gure 8 shows
the same results in graphical form. For the sake of clarity on the �gures, the classi�er names have
been abbreviated as FLD, DoM,NNET, SV M, NN,KNN5 and KNN9.

4.2 Results and Discussion

From the results, it is obviously clear that the classi�ers resulting in non-linear classi�cation bound-
aries (e.g. SVM, Neural network, Parzen window, KNN etc.) perform better than linear classi�ers
(Fisher's Linear discriminant and Di�erence-of-Means classi�ers). For the 2-d dataset, SVM and
neural network give the best accuracy followed by non-parametric techniques (KNN, Parzen win-
dow). On the other hand, for the 3-d dataset, K-nearest neighbour and SVM give practically the
best accuracy and they are followed by nearest neighbour and neural network approaches.

Type of classi�er % classi�cation accuracy (2-d data) % classi�cation accuracy (3-d data)

Fisher's Linear Discriminant 95.85 96.57
Di�erence-of-means 96.85 98.14
Neural network 98.14 98.14

SVM 98.99 99.33
Parzen window 96.28 97.85

Nearest neighbour 96.85 98.57
K-nearest neighbour (k=5) 97.85 99.57
K-nearest neighbour (k=9) 97.85 99.57

Table 7: All classi�er performance on 2-d and 3-d datasets

10

Figure 8: All classi�er performance comparison for 2-d and 3-d datasets

References

[1] A. Asuncion and D. Newman, �UCI machine learning repository,� 2007. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html

[2] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[3] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector machines. [Online]. Available:
http://www.csie.ntu.edu.tw/∼cjlin/libsvm

11

% ECE 662 HW2 Problem 1 : Linear discriminant classification for 2-d dataset
close all;

global training_data test_data

% Fisher's Linear Discriminant in 2D
class1_data = [training_data{1,1} training_data{1,8}];
class2_data = [training_data{4,1} training_data{4,8}];

figure;hold
on;plot(class1_data(:,1),class1_data(:,2),'.');plot(class2_data(:,1),class2_data(:
,2),'r.');
axis([-20 120 -20 120]);

m1=mean(class1_data);
m2=mean(class2_data);

S_W = zeros(2,2);

for i=1:size(class1_data)
 S_W = S_W + (class1_data(i,:)-m1)'*(class1_data(i,:)-m1);
end

for i=1:size(class2_data)
 S_W = S_W + (class2_data(i,:)-m2)'*(class2_data(i,:)-m2);
end

% determining optimal weight vector
w = inv(S_W)*((m1-m2))';

% plotting the weight vector
slope = w(2)/w(1);
x1=1.8;y1=slope*x1;
x2=-.2;y2=slope*x2;
plot([x1;x2],[y1;y2],'k-','LineWidth',2);

% for i=1:size(class1_data)
% l = (class1_data(i,:)*w)/(w'*w);
% plot(l*w(1)-10,l*w(2), 'o');
% end
%
% for i=1:size(class2_data)
% l = (class2_data(i,:)*w)/(w'*w);
% plot(l*w(1)-10,l*w(2), 'ro');
% end

N1=size(class1_data,1);
N2=size(class2_data,1);
N=N1+N2;

% m is the overall mean of the training data
m=(N1*m1+N2*m2)/N;

% This choice of w0 is obtained by posing the Fisher's Linear discriminant
% as a least squares problem.
w0=-w'*m';

% plotting the discriminating hyperplane

x1=-10;y1=-(w(1)*x1+w0)/w(2);
x2=110;y2=-(w(1)*x2+w0)/w(2);
plot([x1;x2],[y1;y2],'m-','LineWidth',2);

xlabel('x_1');
ylabel('x_2');
legend('Class 1','Class 2', 'Weight vector', 'Separating hyperplane');
grid on;

% testing the accuracy of the separating hyperplane on test data
testing_data = [[test_data{1,1} test_data{1,8}];
 [test_data{4,1} test_data{4,8}]];

N1_test = length(test_data{1,1});
N2_test = length(test_data{4,1});
true_class_label = [ones(N1_test,1);
 2*ones(N2_test,1)];
estimated_class_label = zeros(N1_test+N2_test,1);

for i=1:N1_test+N2_test
 x = testing_data(i,:);
 if (w'*x'+w0) > 0
 estimated_class_label(i) = 1;
 else
 estimated_class_label(i) = 2;
 end
end

num_misclassifications = sum(true_class_label ~= estimated_class_label);
classification_accuracy = (1-(num_misclassifications/(N1_test+N2_test)))*100;

disp('Classification using FLD weight vector.');
disp(['# test vectors: ' num2str(N1_test+N2_test)]);
disp(['# misclassifications: ' num2str(num_misclassifications)]);
disp(['# classification accuracy: ' num2str(classification_accuracy)]);

% Starting from here, we investigate the effect of setting S_W to identity matrix
figure;
hold
on;plot(class1_data(:,1),class1_data(:,2),'.');plot(class2_data(:,1),class2_data(:
,2),'r.');
plot([m1(1);m2(1)],[m1(2);m2(2)],'k-','LineWidth',2);
axis([-20 120 -20 120]);

S_W = eye(2);

% determining optimal weight vector
w = inv(S_W)*(m1-m2)';

% This choice of w0 is obtained by posing the Fisher's Linear discriminant
% as a least squares problem.
w0=-w'*m';

% plotting the discriminating hyperplane
x1=-10;y1=-(w(1)*x1+w0)/w(2);
x2=110;y2=-(w(1)*x2+w0)/w(2);
plot([x1;x2],[y1;y2],'m-','LineWidth',2);

xlabel('x_1');
ylabel('x_2');
legend('Class 1','Class 2', 'Weight vector', 'Separating hyperplane');
grid on;

% testing the accuracy of the separating hyperplane on test data
testing_data = [[test_data{1,1} test_data{1,8}];
 [test_data{4,1} test_data{4,8}]];

N1_test = length(test_data{1,1});
N2_test = length(test_data{4,1});
true_class_label = [ones(N1_test,1);
 2*ones(N2_test,1)];
estimated_class_label = zeros(N1_test+N2_test,1);

for i=1:N1_test+N2_test
 x = testing_data(i,:);
 if (w'*x'+w0) > 0
 estimated_class_label(i) = 1;
 else
 estimated_class_label(i) = 2;
 end
end

num_misclassifications = sum(true_class_label ~= estimated_class_label);
classification_accuracy = (1-(num_misclassifications/(N1_test+N2_test)))*100;

disp('Classification using difference-of-means weight vector.');
disp(['# test vectors: ' num2str(N1_test+N2_test)]);
disp(['# misclassifications: ' num2str(num_misclassifications)]);
disp(['# classification accuracy: ' num2str(classification_accuracy)]);

% ECE 662 HW2 Problem 1 : Linear discriminant classification for 3-d dataset
close all;

global training_data test_data

% Fisher's Linear Discriminant in 3D
class1_data = [training_data{1,1} training_data{1,8} training_data{1,15}];
class2_data = [training_data{4,1} training_data{4,8} training_data{4,15}];

figure;hold
on;plot3(class1_data(:,1),class1_data(:,2),class1_data(:,3),'.');plot3(class2_data
(:,1),class2_data(:,2),class2_data(:,3),'r.');

m1=mean(class1_data);
m2=mean(class2_data);

S_W = zeros(3,3);

for i=1:size(class1_data)
 S_W = S_W + (class1_data(i,:)-m1)'*(class1_data(i,:)-m1);
end

for i=1:size(class2_data)
 S_W = S_W + (class2_data(i,:)-m2)'*(class2_data(i,:)-m2);
end

% determining optimal weight vector
w = inv(S_W)*((m1-m2))';

% plotting the weight vector
point1 = (5e4)*w;
point2 = (-20e4)*w;
plot3([point1(1);point2(1)],[point1(2);point2(2)],[point1(3);point2(3)],'k-','Line
Width',2);grid on;

N1=size(class1_data,1);
N2=size(class2_data,1);
N=N1+N2;

% m is the overall mean of the training data
m=(N1*m1+N2*m2)/N;

% This choice of w0 is obtained by posing the Fisher's Linear discriminant
% as a least squares problem.
w0=-w'*m';

% plotting the discriminating hyperplane
[X,Y]=meshgrid([-5:60]);
Z=-(w(1)*X+w(2)*Y+w0)/w(3);
surf(X,Y,Z);
axis equal;

xlabel('x_1');
ylabel('x_2');
zlabel('x_3');
legend('Class 1','Class 2', 'Weight vector');
grid on;

% testing the accuracy of the separating hyperplane on test data
testing_data = [[test_data{1,1} test_data{1,8} test_data{1,15}];
 [test_data{4,1} test_data{4,8} test_data{4,15}]];

N1_test = length(test_data{1,1});
N2_test = length(test_data{4,1});
true_class_label = [ones(N1_test,1);
 2*ones(N2_test,1)];
FLD_class_label = zeros(N1_test+N2_test,1);

for i=1:N1_test+N2_test
 x = testing_data(i,:);
 if (w'*x'+w0) > 0
 FLD_class_label(i) = 1;
 else
 FLD_class_label(i) = 2;
 end
end

num_misclassifications = sum(true_class_label ~= FLD_class_label);
classification_accuracy = (1-(num_misclassifications/(N1_test+N2_test)))*100;

disp('Classification using FLD weight vector.');
disp(['# test vectors: ' num2str(N1_test+N2_test)]);
disp(['# misclassifications: ' num2str(num_misclassifications)]);

disp(['# classification accuracy: ' num2str(classification_accuracy)]);

% Starting from here, we investigate the effect of setting S_W to identity matrix
figure;
hold
on;plot3(class1_data(:,1),class1_data(:,2),class1_data(:,3),'.');plot3(class2_data
(:,1),class2_data(:,2),class2_data(:,3),'r.');
plot3([m1(1);m2(1)],[m1(2);m2(2)],[m1(3);m2(3)],'k-','LineWidth',2);

S_W = eye(3);

% determining optimal weight vector
w = inv(S_W)*(m1-m2)';

% This choice of w0 is obtained by posing the Fisher's Linear discriminant
% as a least squares problem.
w0=-w'*m';

% plotting the discriminating hyperplane
[X,Y]=meshgrid([-5:60]);
Z=-(w(1)*X+w(2)*Y+w0)/w(3);
surf(X,Y,Z);
axis equal;

xlabel('x_1');
ylabel('x_2');
legend('Class 1','Class 2', 'Weight vector');
grid on;

% testing the accuracy of the separating hyperplane on test data
testing_data = [[test_data{1,1} test_data{1,8} test_data{1,15}];
 [test_data{4,1} test_data{4,8} test_data{4,15}]];

N1_test = length(test_data{1,1});
N2_test = length(test_data{4,1});
true_class_label = [ones(N1_test,1);
 2*ones(N2_test,1)];
FLD_class_label = zeros(N1_test+N2_test,1);

for i=1:N1_test+N2_test
 x = testing_data(i,:);
 if (w'*x'+w0) > 0
 FLD_class_label(i) = 1;
 else
 FLD_class_label(i) = 2;
 end
end

num_misclassifications = sum(true_class_label ~= FLD_class_label);
classification_accuracy = (1-(num_misclassifications/(N1_test+N2_test)))*100;

disp('Classification using difference-of-means weight vector.');
disp(['# test vectors: ' num2str(N1_test+N2_test)]);
disp(['# misclassifications: ' num2str(num_misclassifications)]);
disp(['# classification accuracy: ' num2str(classification_accuracy)]);

% ECE 662 HW 2 Problem 2 : Neural network classification

class1 = 1;
class2 = 4;

N1_train = length(training_data{class1,1});
N2_train = length(training_data{class2,1});

N1_test = length(test_data{class1,1});
N2_test = length(test_data{class2,1});

neural_train_labels = [ones(N1_train,1);
 4*ones(N2_train,1)];

neural_test_labels = [ones(N1_test,1);
 4*ones(N2_test,1)];

fp=fopen('nn_results.txt','w');

for attribute=1:16

 neural_train_data=[];
 neural_test_data=[];

 % preparing training and test data
 for j=1:attribute
 neural_train_data = [neural_train_data
[training_data{class1,j};training_data{class2,j}]];
 neural_test_data = [neural_test_data
[test_data{class1,j};test_data{class2,j}]];
 end

 % creating, training and testing the network.
 net = newff(neural_train_data', neural_train_labels', 5);
 net = train(net, neural_train_data', neural_train_labels');
 net_output = sim(net, neural_test_data');

 % The network output needs to be threholded to give a 2-class
 % classification.
 index = find(net_output<=2.5);
 net_output(index) = 1;

 index = find(net_output>2.5);
 net_output(index) = 4;

 num_misclassifications = sum(neural_test_labels' ~= net_output);
 classification_accuracy = (1-(num_misclassifications/(N1_test+N2_test)))*100;
 disp(classification_accuracy);

 fprintf(fp,'%4.2f\n',classification_accuracy);

end

fclose(fp);

% ECE 662 HW 2 Problem 3 : Parzen Window Density Estimation

% We use Gaussian Parzen window.

ATTRIBUTES=16;

N1_train = length(training_data{1,1});
N2_train = length(training_data{4,1});
N1_test = length(test_data{1,1});
N2_test = length(test_data{4,1});

h=1200;
h_N1=h/sqrt(N1_train);
h_N2=h/sqrt(N2_train);

parzen_train_labels = [ones(N1_train,1);
 4*ones(N2_train,1)];

parzen_test_labels = [ones(N1_test,1);
 4*ones(N2_test,1)];

for attribute=1:ATTRIBUTES

 parzen_train_data=[];
 parzen_test_data=[];

 for j=1:attribute
 parzen_train_data = [parzen_train_data
[training_data{1,j};training_data{4,j}]];
 parzen_test_data = [parzen_test_data [test_data{1,j};test_data{4,j}]];
 end

 predicted_test_labels=[];

 for i=1:N1_test+N2_test
 test_point = parzen_test_data(i,:);
 test_vector = ones(N1_train+N2_train,1) * test_point;

 diff_vector = parzen_train_data - test_vector;

 diff_vector(1:N1_train,:) = diff_vector(1:N1_train,:)/h_N1;
 diff_vector(N1_train+1:N1_train+N2_train,:) =
diff_vector(N1_train+1:N1_train+N2_train,:)/h_N2;

 if attribute == 1
 gaussian_pdf_values = normpdf(diff_vector);
 else
 gaussian_pdf_values = mvnpdf(diff_vector);
 end

 class1_probability = sum(gaussian_pdf_values(1:N1_train))/N1_train;
 class2_probability =
sum(gaussian_pdf_values(N1_train+1:N1_train+N2_train))/N2_train;

 if class1_probability >= class2_probability
 predicted_test_labels=[predicted_test_labels;1];
 else
 predicted_test_labels=[predicted_test_labels;4];
 end
 end

 num_misclassifications = sum(parzen_test_labels ~= predicted_test_labels);
 classification_accuracy = 100*(1 - num_misclassifications/(N1_test+N2_test));

 disp(['attributes=' num2str(attribute) ' <--> Classification accuracy='
num2str(classification_accuracy) '%']);
end

% ECE 662 HW 2 Problem 3 : Nearest neighbour and K-nearest neighbour
% algorithm implementation.

K=[1 3 5 7 9];

ATTRIBUTES=16;

N1_train = length(training_data{1,1});
N2_train = length(training_data{4,1});
N1_test = length(test_data{1,1});
N2_test = length(test_data{4,1});

knn_train_labels = [ones(N1_train,1);
 4*ones(N2_train,1)];

knn_test_labels = [ones(N1_test,1);
 4*ones(N2_test,1)];

fp = fopen('knn_results.txt','w');

for k=K

 fprintf(fp, 'k=%d\n\n',k);

 for attribute=1:ATTRIBUTES

 disp(['k=' num2str(k) ' attributes=' num2str(attribute)]);

 knn_train_data=[];
 knn_test_data=[];

 for j=1:attribute
 knn_train_data = [knn_train_data
[training_data{1,j};training_data{4,j}]];
 knn_test_data = [knn_test_data [test_data{1,j};test_data{4,j}]];
 end

 predicted_test_labels=[];

 for i=1:N1_test+N2_test
 test_point = knn_test_data(i,:);
 test_vector = ones(N1_train+N2_train,1) * test_point;

 diff_vector = knn_train_data - test_vector;
 euclidean_distance = sqrt(sum((diff_vector .* diff_vector),2));

 [sorted_distance, index]=sort(euclidean_distance);

 class1_score=0;
 class2_score=0;

 for m=1:k
 if knn_train_labels(index(m)) == 1
 class1_score=class1_score+1;
 else
 class2_score=class2_score+1;
 end
 end

 if class1_score > class2_score
 predicted_test_labels=[predicted_test_labels;1];
 else
 predicted_test_labels=[predicted_test_labels;4];
 end
 end

 num_misclassifications = sum(knn_test_labels ~= predicted_test_labels);
 classification_accuracy = 100*(1 -
num_misclassifications/(N1_test+N2_test));
 fprintf(fp, '%4.2f\n', classification_accuracy);
 end
 fprintf(fp, '\n\n');
end

fclose(fp);

