MA 453 - Elements Of Algebra I

January 22, 2009

Professor Uli Walther

January 13, 2008

By the end of the course, we will be given answers to the following:

1. Is it possible to write down explicit formulas to determine the roots of a polynomial (e.g. $c_{n} x^{n}+c_{n-1} x^{n-1}+\ldots+c_{o}$) in the terms of the coefficients c_{n}, \ldots, c_{o} in the same way as the roots of the quadratic equation as given by (allowed operations are,,$+- \div, \times, \sqrt[k]{ })$,

$$
r_{1,2}=-\frac{c_{1}}{2 c_{2}} \pm \sqrt{\frac{c_{1}^{2}}{4 c_{2}^{2}}-\frac{c_{o}}{c_{2}}}
$$

2. (Dido's Problem) Given a ruler, compass, and a cube of volume 1, can you construct a cube of twice the volume? (Given a line segment of length 1 , can you construct a line segment of length $\sqrt{2}$)
3. With ruler and compass, can you disect arbitrary angles?

Math Symbols:

Symbol	
\mathbb{N}	naturals $-0,1,2$
\mathbb{Z}	$\ldots,-3,-2,-1,0,1,2,3, \ldots$
\mathbb{Q}	rationals $\left\{\left.\frac{p}{q} \right\rvert\, p, q \in \mathbb{Z}, q \neq 0\right\}$
\mathbb{R}	reals
\mathbb{C}	complex numbers

In order to write math "sentences," we use the following logic symbols,

Symbol	
\in	"is element of"
\subseteq	"is subset of"
\exists	"there exists"
\forall	"for all"

For example, $\forall n \in \mathbb{N} \exists m \in \mathbb{N} \mid m=n+1$, for all natural n, there exists a real number m, such that $m=n+1$.

Theorem Archimedian Property
If $n \in \mathbb{N}, m \in \mathbb{N}$ with $n \neq 0$, then $\exists q \in \mathbb{N}$ with $n \cdot q>m$.
Theorem Well-Ordering
If you take any non-empty subset S of \mathbb{N}, then S has a minimal element. (Contrast: \mathbb{Z} has no such minimum).

Example Proof that $\sqrt{2}$ is not rational.
If $\sqrt{2}$ were rational, then $\sqrt{2}=\frac{p}{q}$ where $p, q \in \mathbb{N}$ and $q \neq 0 . \frac{p^{2}}{q^{2}}=2 \Rightarrow p^{2}=$ $2 q^{2}$. p must be even, $p=2 p^{\prime}$. Plugging in, $\left(2 p^{\prime}\right)^{2}=2 q^{2}$ or $2\left(p^{\prime}\right)^{2}=q^{2}$. Thus $q=2 q^{\prime}, 2\left(p^{\prime}\right)^{2}=\left(2 q^{\prime}\right)^{2}$, or $\left(p^{\prime}\right)^{2}=2\left(q^{\prime}\right)^{2}$, or $\frac{p^{\prime}}{q^{\prime}}=\sqrt{2}$. Assuming rationality, p must exist and must be minimal. If such a p exists, however, p would not be minimal. Contradiction shows that p does not exist.

Theorem Euclid
Given $a, b \in \mathbb{Z}, \exists q, r \in \mathbb{Z}$ with $a=q b+r$ with $0 \leq r<|b|$.
Example $a=7, b=2 ; 7=3 \cdot 2+1 . a=-4, b=3,-4=(-2) \cdot 3+2$.
Definition Given $a, b \in \mathbb{Z}$, there are natural numbers $l=\operatorname{lcd}(a, b), g=$ $\operatorname{gcd}(a, b)$ where $\operatorname{gcd}(a, b)=\max \{n \in \mathbb{N} \mid n$ divides a and $b\}, \operatorname{lcm}(a, b)=\max \{n \in$ $\mathbb{N} \mid a$ divides n and b divides $n\}$.

Euclidian Algorithm For gcd (a, b). Initialize: $a_{o}=a, b_{o}=b$. Iteration: Write $a_{i}=q_{i} \cdot b_{i}+r_{i}$ with $q_{i}, r_{i} \in \mathbb{Z}$ and $0 \leq r_{i}<\left|b_{i}\right|$. Reset: $a_{i+1}=b_{i}$, $b_{i+1}=r_{i}$ until $r_{i}=0$. When $r_{i}=0, \operatorname{gcd}(a, b)=b_{i}$.

Example $a=47, b=65 ; a_{o}=65, b_{o}=65$. I1: $47=0 \cdot 65+47, a_{1}=65$, $b_{1}=47$. I2: $65=1 \cdot 47+18, a_{2}=47, b_{2}=18$. I3: $47=2 \cdot 18+11, a_{3}=18$, $b_{3}=11$. I4: $18=1 \cdot 11+7, a_{4}=11, b_{4}=7$. I5: $11=1 \cdot 7+4, a_{5}=7, b_{5}=4$. I6: $7=1 \cdot 4+3, a_{6}=4, b_{6}=3$. I7: $4=1 \cdot 3+1, a_{7}=3, b_{7}=1$. I8: $3=3 \cdot 1+0$ END.

Note if $a, b \in \mathbb{N}$, not zero,

$$
\operatorname{lcm}(a, b)=\frac{a \cdot b}{\operatorname{gcd}(a, b)}
$$

To illustrate, $a=2^{0} \cdot 3^{2} \cdot 5^{1}=45, b=2^{4} \cdot 3^{1} \cdot 5^{0}=48$. We claim that $\operatorname{lcm}(a, b) \cdot \operatorname{gcd}(a, b)=a \cdot b$.

$$
\left(2^{\max (0,4)} \cdot 3^{\max (2,1)} \cdot 5^{\max (1,0)}\right)\left(2^{\min (0,4)} \cdot 3^{\min (2,1)} \cdot 5^{\min (1,0)}\right)=a \cdot b
$$

This only works for two numbers. If we try to apply this to some a, b, and c we will be sadly disappointed.

Definition We say that a number $n \in \mathbb{N}$ is irreducible if an equation $a \cdot b=n$ (with $a, b \in \mathbb{N}$), either $a=1$ or $b=1$. We say that n is prime if " n divides $a \cdot b^{\prime \prime}$ only happens if $n \mid a$ or $n \mid b$

Fact Within the integers, "prime" and "irreducible" are the same.
Proof Prime \Rightarrow irreducble. Let n be prime, and assume that $a \cdot b=n$, $(a, b \in \mathbb{N})$. Then $n \mid a b$ and as n prime, $n \mid a$ or $n \mid b$. If $n \mid a, a=q n$. So $n=a b=$ $q b n$, so $q b=1 \Rightarrow q, b=1$. Similarly, $n \mid b \Rightarrow a=1$.

Corollary of Euclid If $a>b, \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a-b)=\ldots .$. So, $\operatorname{gcd}(a, b)$ is a linear combination of $a, b: \operatorname{gcd}(a, b)=x a+y b$ with $x, y \in \mathbb{Z}$.

January 15, 2008

Theorem $\operatorname{gcd}(a, b)$ is a linear combination of a and $b: \operatorname{gcd}(a, b)=a x+b y$ where x and y are integers (because of Euclidian Alogrith).

So let p be irreducible and suppose $p \mid a \cdot b$. Need to sho: $p \mid a$ or $p \mid b$. Suppose p does not divide a, then $\operatorname{gcd}(p, a)$ is not p, hence 1 as p is irreducible. So,

$$
1=x \cdot p+y \cdot a
$$

with $x, y \in \mathbb{Z}$. So,

$$
b \cdot 1=x \cdot b \cdot p+y \cdot a \cdot b
$$

This says that p divides the RHS, so $p \mid b$. Similarly, if p does not divide b, then $p \mid a$.

Fermat's Last Theorem It is not possible to obtain $a^{n}=b^{n}+c^{n}$ for $a, b, c>0$ and $n>2$.

Modular Arithmetic is a system of arithmetic for integers, where numbers "wrap around" after they reach a certain value - the modulus. The basic idea is to choose an integer $n \in \mathbb{Z}$ and equate it with 0 . Let's say that $n=12$. "Survivors" are $0,1, \ldots, 11$ in some sense.

Definition " \mathbb{Z} modulo $n \mathbb{Z}$ " Let $n \in \mathbb{Z}$ then let $\mathbb{Z} / n \mathbb{Z}$ stand for the n families of numbers $\{\ldots,-n, 0, n, 2 n, \ldots\},\{\ldots,-n+1,1, n+1,2 n+1, \ldots\},\{\ldots,-n-1,-1, n-1,2 n-1, \ldots\}$.

Theorem Things in $\mathbb{Z} / n \mathbb{Z}$ can be added, subtracted, multiplied, and (in lucky cases) divided.

Example $n=2$. We have 2 families in $\mathbb{Z} / 2 \mathbb{Z},\{\ldots,-2,0,2,4, \ldots\} \rightarrow 0+$ $2 \mathbb{Z},\{\ldots,-3,-1,1,3,5, \ldots\} \rightarrow 1+2 \mathbb{Z}$. One will note that there are an infinite representations of these two families. In adding the families together,

+	$\mathbf{0}+\mathbf{2} \mathbb{Z}$	$\mathbf{1}+\mathbf{2} \mathbb{Z}$
$\mathbf{0}+\mathbf{2} \mathbb{Z}$	$0+2 \mathbb{Z}$	$1+2 \mathbb{Z}$
$\mathbf{1}+\mathbf{2} \mathbb{Z}$	$1+2 \mathbb{Z}$	$0+2 \mathbb{Z}$

Multiplying,

\times	$\mathbf{0}+\mathbf{2} \mathbb{Z}$	$\mathbf{1}+\mathbf{2} \mathbb{Z}$
$\mathbf{0}+\mathbf{2} \mathbb{Z}$	$0+2 \mathbb{Z}$	$0+2 \mathbb{Z}$
$\mathbf{1}+\mathbf{2} \mathbb{Z}$	$0+2 \mathbb{Z}$	

Fact Addition, subtraction, multiplication in $\mathbb{Z} / n \mathbb{Z}$ can be done by "representatives":

$$
(a+n \mathbb{Z})+(b+n \mathbb{Z})=(a+b)+n \mathbb{Z}
$$

then,

$$
\begin{gathered}
a^{\prime}+b^{\prime}=a+k n+b+l n \\
a^{\prime}+b^{\prime}=(a+b)+n \cdot(k+l)
\end{gathered}
$$

Similarly for multiplication,

$$
(a+n \mathbb{Z}) \cdot(b+n \mathbb{Z})=(a b)+n \mathbb{Z}
$$

where $(a+n \mathbb{Z})$ is referred to as the "coset of a."
Example Is $a=743126882431$ divisible by 9 ? Note that a is divisible 9 if and only if $a+9 \mathbb{Z}=0+9 \mathbb{Z}$. What is a ?

$$
a=1 \cdot 10^{0}+3 \cdot 10^{1}+4 \cdot 10^{2}+\ldots+7 \cdot 10^{11}
$$

$10 \equiv 1, \bmod 9$. So, $100 \equiv 10 \cdot 10 \equiv 1 \cdot 1=1$ and $10^{k}=10^{k-1} \cdot 10 \equiv 1 \cdot 1=1$. Note that we call " \equiv " congruent. So,

$$
a \equiv 1 \cdot 1+3 \cdot 1+4 \cdot 1+\ldots+7 \cdot 1
$$

$a=49$ which is the class 4 . So the class/coset of a is the class of 4 , not the class of 0 which is the condition that needs to be met to be divisible by 9 . Therefore, 9 does not divide a.

Fact An integer is divislbe by 9 if and only if the sum of its digits in decimal expansion expansion is divisible by 9 .
a is divisble by 11 if and only if the alternating sum of the digits is divisible by 11 .

Example Divisibility by 7. $10^{0}=1 \equiv 1,10^{1}=10 \equiv 3,10^{2}=100 \equiv 2$, $10^{3} \equiv 6,10^{4} \equiv 4,10^{5} \equiv 5,10^{6} \equiv 1$. So, for example, if I take $7144285019 \equiv 3$.

GROUPS

Definition A group G is a set with an operation \star such that 1.) $a \star b$ is in G, 2.) $a \star(b \star c)=(a \star b) \star c$ (associativity), 3.) there is a special element 1_{G} for which $a \star 1_{G}=a$ and $a=1_{G} \star a$ (identity), 4.) for all $a \in G$ there is an "inverse" b such that $a \star b=1_{G}=b \star a$ (of course as a changes so does b).

January 20, 2009

Note that in most discussion, \star is merely a placeholder for an operation. In many examples, the star will be replaced with a real arithmetic operation. Recall that (G, \star) is a group if and only if

- G is a set with a binary operation $\star: G \star G \rightarrow G$
- $\operatorname{slt}(a b) c=a(b c)$
- $\exists 1_{G} \in G$ with $1_{G} \cdot g=g \cdot 1_{G}=g \forall g$
- $\forall g \in G \exists g^{-1}$ with $g g^{-1}=1$

Examples

- $(\mathbb{Z},+)$; know: $a+(b+c)=(a+b)+c$, identity $=0$, inverse $=$ negative.
- $(\mathbb{Z} / n,+) ; \mathbb{Z} / n=\{0+n \mathbb{Z}, 1+n \mathbb{Z}, \ldots,(n-1)+n \mathbb{Z}\}$, where $i+n \mathbb{Z}=\{\ldots, i-2 n, i-n, i, i+n, i+2 n, \ldots\}$ and $(a+n \mathbb{Z})+(b+n \mathbb{Z})=(a+b)+n \mathbb{Z}$.
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ with $+;$ identity $=0$; inverse $=$ negative
- $(\mathbb{Q} \backslash\{0\}, \times)$; we know $a(b c)=(a b) c$; identity $=1$; inverse $=$ inverse (note: $a \neq 0, b \neq 0 \Rightarrow a b \neq 0)$.
- Similarly, $(\mathbb{R} \backslash\{0\}, \times)$, $(\mathbb{C} \backslash\{0\}, \times$)
- Let G be a group such as $(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$. Let $G^{m, n}$ be the $m \times n$ matrices with entries in G. $\left(G^{m, n},+\right)$ is a group. Identity $=m \times n$ matrix of zeros; inverse = matrix with "negatived" entries.
- Let $G L(n, \mathbb{Q})=n \times n$ matrices with rational entries, with matrix multiplication as operation, and with det $\neq 0$. We know that $A(B C)=(A B) C$; identity $=$ indentity matrix; inverse $=$ matrix inverse
- Symmetry groups: Consider an equilateral triangle with vertices a, b, c.

Let's consider the collection of all rigid motions that transform the triangle into itself. These are: [1] 2 rotations by $120^{\circ}, l$ and r, [2] not doing anything, call it 1, [3] 3 flips, where each flips fixes one of the corners a, b, or c and flips the triangle on the axis drawn from the triangle vertex perpendicular to the opposing side. Together they form symmetry $\operatorname{sym}(\triangle)=\{1, l, r, a, b, c\}$. This is all of the possibilities, because $3!=6$. We make this a group by composing motions.

Multiplication table for sym (Δ), where the $i-j$ entry $=i \star j$:

	1	\mathbf{r}	\mathbf{l}	\mathbf{a}	\mathbf{b}	\mathbf{c}
1	1	r	l	a	b	c
\mathbf{r}	r	l	1	b	c	a
\mathbf{l}	l	1	r	c	a	b
\mathbf{a}	a	c	b	1	l	r
\mathbf{b}	b	a	c	r	1	l
\mathbf{c}	c	b	a	l	r	1

Note that in each row and each column, each element shows exactly once. Why? In any column we are looking at products of the form $g \times g_{o}$, where g_{o} is the column index and g runs through the group. What this means is that g_{o} represents the column and g represents the row.

Suppse that some element x does not show in this column. This means that some other element shows at least twice. What this tells us is for some g_{o} and two different g I get the same result, call it $y . g g_{o}=y \Rightarrow g\left(g_{o} g_{o}^{-1}\right)=y g_{o}^{-1}$, or $g=y g_{o}^{-1}$, similarly $g^{\prime}=y g_{o}^{-1}$. We can conclude then that $g=g^{\prime}$ and thus nothing can be repeated, and nothing is missing.

Note that in many cases,

$$
g \times g^{\prime} \neq g^{\prime} \times g
$$

Multiplication tables are symmetric if and only if $g g^{\prime}=g^{\prime} g$ in all cases.
Definition (G, \times) is Abelian (commutative) if the multiplication table is symmetric (means: you can reorder factors in a product.)

Abelian $\mathbb{Z}, \mathbb{R}, \mathbb{C}$; vector spaces, $\left(G^{m, n},+\right)$ where $G=\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C} ;(\mathbb{Z} / n \mathbb{Z},+)$
Non-Abelian $\operatorname{sym}(\triangle) ;$ most symmetry groups; $G \mid(\mathbb{Q}, n)$ and $G \mid(\mathbb{R}, n)$, $G l(\mathbb{C}, n)$.

Case study on inverting $\bmod (n)$. Zeros are not admissable!
$n=2: 1+2 \mathbb{Z}=$ odd numbers.
Question Can we make $\{1+2 \mathbb{Z}\}$ at multiplicative group? Yes.

	$\mathbf{1}$
$\mathbf{1}$	1

$n=3: 1+3 \mathbb{Z} ; 2+3 \mathbb{Z}$

	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{1}$	1	2
$\mathbf{2}$	2	1

$n=4: \overline{1}=1+4 \mathbb{Z}, \overline{2}, \overline{3}, \overline{4}$

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{1}$	1	-	3
$\mathbf{2}$	-	-	-
$\mathbf{3}$	3	-	1

In general, starting with $\mathbb{Z} / n \mathbb{Z}$, remove $\overline{0}$ and all cosets of numbers that have a common gcd with n. If we do this, we are left with a set called $U(u)$ or $(\mathbb{Z} / n \mathbb{Z})^{\times}$(the "units mod n "). Why do they make a group?

- If $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)=1$, then $\operatorname{gcd}(a \star b, n)=1$. So $U(u) \cdot U(n) \subseteq$ $U(n)$.
- Associativity follows from \mathbb{Z} group.
- Identity: $1+n \mathbb{Z}$
- Inverse: assuming $\operatorname{gcd}(a, n)=1$ we need a b with $\operatorname{gcd}(b, n)=1$ and $\bar{a} \cdot \bar{b}=\overline{1}$.

Recall Euclidian algorithm and its consequence,

$$
\operatorname{gcd}(\alpha, \beta)=x \alpha+y \beta
$$

with $x, y \in \mathbb{Z}$. So, $1=x a+y n$; thus $\bar{x} \bar{a}=\overline{1}-\overline{y n}, \bar{x}=\bar{a}^{-1}$ and $\overline{y n}=\overline{0}$.

January 22, 2009

PERMUTATIONS

Definition Given n labelled objects such as $\{1, \ldots, n\}$, a permutation (on n elements) is an ordering of these n objects.

Note There are $n!=n(n-1)(n-2) \ldots 2 \cdot 1$ such permutations. The ways of writing permutations: standard notation $(5,4,1,2,3)$ or \rrbracket; cycle notation $(1,5,3)(2,4)$

Note Irredundant cycle notation if and only if each number/object occurs precisely once. Redundant if not irredundant.

Example What is the composition of permutations from right to left of $(1,2,3)$?

$$
(1,2,3) \xrightarrow{(1,3)}(3,2,1) \xrightarrow{(1,2)}(2,3,1)
$$

This operation is written as (12) (13). The order of a permutation. Suppose we fix one permutation $(1,4,5)(2,3)=\sigma$. After two executions of this permutation, we have $(1,4,5)(2,3)(1,4,5)(2,3)=(1,5,4)$

Definition The order of a permutation σ is the smallest number ord $(\sigma) \geq$ 1 such that $\operatorname{ord}(\sigma)$ iterations of σ combine to the identity permutation.

Example ord $((1,4,5)(2,3))=6$.
Theorem Suppose σ is given in irredundant cycle notation, $\sigma=c_{1} \cdot c_{2} \cdot \ldots \cdot c_{k}$. Let l_{i} be the length of cycle c_{i}. Then $\operatorname{ord}(\sigma)=\operatorname{lcm}\left(l_{1}, \ldots, l_{k}\right)$.

Remark Book says "disjoint cycle notation" for "irredundant cycle notation."
Definition A transposition is a 2 -cycle.
Theorem Any permutation can be achieved by a composition of 2-cycles (not disjoint usually).

Proof We need to show that any cycle is a composition of 2-cycles. Use induction: let l be the length of the cycle. $(a)=(l, a)(l, a)$, so $l=1$. For $l=2$, there is nothing to do. For $l>2$:

$$
\left(a_{1}, a_{2}, a_{3}, \ldots, a_{l}\right)=\left(a_{1}, a_{3}, a_{4}, \ldots, a_{l}\right)\left(a_{1}, a_{2}\right)
$$

Question Given σ, how many 2-cycles can be used to write σ as their product? This is a bad question because $\sigma=\sigma(1,2)(1,2) \cdots$. A better question would be, can we say anything about the number of 2 -cycles used to produce σ ?

Definition The disorder of σ is the number of pairs $\{i, j\}$ with $1 \leq i<$ $j \leq n$, such that $\sigma(i)>\sigma(j)$.

Example If $\sigma(1,2,3,4,5)=2,4,5,1,3 . \quad \sigma(1)=2, \sigma(2)=4, \sigma(3)=5$, $\sigma(4)=1, \sigma(5)=3$.

Pair	In order after $\sigma ?$
1,2	yes
1,3	yes
1,4	no
1,5	yes
2,3	yes
2,4	no
2,5	no
3,4	no
3,5	no
4,5	yes

Definition σ is odd (-1) if its disorder is odd, and even $(+1)$ if its disorder is even. The "parity" of σ.

Note Any 2-cycle is odd. For the order $123 \ldots i \ldots j \ldots n$ permutes to 1 $2 \ldots j \ldots i \ldots n$. Who is out of order? Even: all pairs of numbers (a, i) with $i<a<j$; all pairs of numbers (a, j) with $i<a<j$. The collection of all permutations falls into even and odd choices. Every 2-cycle is odd.

Fact Suppose you compose 2 permutations σ and τ. The parity of the product behaves as follows,

	σ odd (-1)	σ even (+1)
τ odd (-1)	even (+1$)$	odd (-1)
τ even (1)	odd (-1)	even $(+1)$

"Parity is a homomorphism, it respects products." In particular, the number of even and odd permutations is the same. Taking any permutation and composing it with two • $(1,2)$ yields identity.

Definition The collection of all permutations of n elements is called the symmetric group S_{n}.

