ECE 302 Homework 6
 Due July 26, 2016

Reading assignment: chapter 5 , sections $5.8,5.9$; chapter 6 , section 6.5 .

1. Let X and Y be random variables denoting coordinates on the $x y$-plane. The rotation of the point (X, Y) through θ to the point (U, V) can be performed by letting:

$$
\begin{aligned}
& U=X \cos \theta-Y \sin \theta \\
& V=X \sin \theta+Y \cos \theta
\end{aligned}
$$

Find $f_{U, V}(u, v)$.

Solution:

Problem not graded, transformation was incorrect in the assignment
(a) Density Method:
$f_{U, V}(u, v)=f_{X, Y}(x(u, v), y(u, v))\left|\frac{\partial(u, v)}{\partial(x, y)}\right|^{-1}$
We have that,

$$
\begin{aligned}
& u=x \cos \theta-y \sin \theta, v=x \sin \theta+y \cos \theta \\
\Longrightarrow & u \cos \theta=x \cos ^{2} \theta-y \sin \theta \cos \theta, v \sin \theta=x \sin ^{2} \theta+y \cos \theta \sin \theta \\
\Longrightarrow & x=u \cos \theta+v \sin \theta
\end{aligned}
$$

Similarly, $y=-u \sin \theta+v \cos \theta$.
We also have that,

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right|=1 .
$$

Therefore,
$f_{U, V}(u, v)=f_{X, Y}(u \cos \theta+v \sin \theta,-u \sin \theta+v \cos \theta)$.
2. Two lightbulbs from different brands have lifetimes X and Y that are independent and exponentially distributed with average lifetime $1 / \lambda_{1}$ and $1 / \lambda_{2}$, respectively. Both lightbulbs are turned on at the same time.
(a) Let U be the time elapsed until both lightbulbs have burned out. Find the pdf of U.
(b) Let V be the time elapsed until the first lightbulb has burned out. Find the pdf of V.
(c) Find the joint pdf of U and V.

Solution:

(a) U is the time elapsed until both lightbulbs have burned out, thus $U=\max \{X, Y\}$. The cdf of U can be found as follows:

$$
\begin{aligned}
F_{U}(u) & =\operatorname{Pr}(U \leq u) \\
& =\operatorname{Pr}(\max \{X, Y\} \leq u) \\
& =\operatorname{Pr}(\{X \leq u\} \cap\{Y \leq u\}) \\
& =\operatorname{Pr}(\{X \leq u\}) \operatorname{Pr}(\{Y \leq u\}), \text { since } X, Y \text { are independent } \\
& =F_{X}(u) F_{Y}(u)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f_{U}(u) & =\frac{d}{d u} F_{U}(u) \\
& =\frac{d}{d u} F_{X}(u) F_{Y}(u) \\
& =f_{X}(u) F_{Y}(u)+F_{X}(u) f_{Y}(u) \\
& =\lambda_{1} e^{-\lambda_{1} u}\left(1-e^{-\lambda_{2} u}\right)+\lambda_{2} e^{-\lambda_{2} u}\left(1-e^{-\lambda_{1} u}\right), u \geq 0
\end{aligned}
$$

(b) V is the time elapsed until the first lightbulb has burned out, thus $V=\min \{X, Y\}$. The cdf of V can be found as follows:

$$
\begin{aligned}
F_{V}(v) & =\operatorname{Pr}(V \leq v) \\
& =\operatorname{Pr}(\min \{X, Y\} \leq v) \\
& =1-\operatorname{Pr}(\min \{X, Y\} \geq v) \\
& =1-\operatorname{Pr}(\{X \geq v\} \cap\{Y \geq v\}) \\
& =1-\operatorname{Pr}(\{X \geq v\}) \operatorname{Pr}(\{Y \geq v\}), \text { since } X, Y \text { are independent } \\
& =1-\left(1-F_{X}(v)\right)\left(1-F_{Y}(v)\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
f_{V}(v) & =\frac{d}{d v} F_{V}(v) \\
& =\frac{d}{d v} 1-\left(1-F_{X}(v)\right)\left(1-F_{Y}(v)\right) \\
& =f_{X}(v)\left(1-F_{Y}(v)\right)+f_{Y}(v)\left(1-F_{X}(v)\right) \\
& =\left(\lambda_{1}+\lambda_{2}\right) e^{-\left(\lambda_{1}+\lambda_{2}\right) v}, v \geq 0
\end{aligned}
$$

(c) Want to find the joint pdf of U and V. The joint cdf of U and V can be found by expressing the events $\{U \leq u\}$ and $\{V \leq v\}$ as $\{X \leq u\} \cap\{Y \leq u\}$ and $\{X \leq v\} \cup\{Y \leq v\}$, respectively. Therefore,

$$
\begin{aligned}
F_{U, V}(u, v) & =\operatorname{Pr}(U \leq u \cap V \leq v) \\
& =\operatorname{Pr}((\{X \leq u\} \cap\{Y \leq u\}) \cap(\{X \leq v\} \cup\{Y \leq v\}) \\
& =\operatorname{Pr}((\{X \leq u\} \cap\{Y \leq u\} \cap\{X \leq v\}) \cup(\{X \leq u\} \cap\{Y \leq u\} \cap\{Y \leq v\})) \\
& =\left\{\begin{array}{cc}
\operatorname{Pr}((\{X \leq u\} \cap\{Y \leq u\})) & , v>u \\
\operatorname{Pr}((\{X \leq v\} \cap\{Y \leq u\}) \cup(\{X \leq u\} \cap\{Y \leq v\})) & , v \leq u
\end{array}\right. \\
& =\left\{\begin{array}{cc}
F_{X, Y}(u, u) & , v>u \\
F_{X, Y}(v, u)+F_{X, Y}(u, v)-F_{X, Y}(v, v) & , v \leq u
\end{array}\right.
\end{aligned}
$$

Note: Can also find the joint cdf of U and V using the distribution method (see p. 235 for details on plotting areas related to min and max functions).

The joint pdf of U and V can be found as:

$$
\begin{aligned}
f_{U, V}(u, v) & =\frac{\partial^{2}}{\partial u \partial v} F_{U, V}(u, v) \\
& =\left\{\begin{array}{cl}
f_{X}(v) f_{Y}(u)+f_{X}(u) f_{Y}(v) & , v \leq u \\
0 & , v>u
\end{array}\right. \\
& =\left\{\begin{array}{cl}
\lambda_{1} \lambda_{2}\left(e^{-\left(\lambda_{1} v+\lambda_{2} u\right)}+e^{-\left(\lambda_{1} u+\lambda_{2} v\right)}\right) & , 0 \leq v \leq u<\infty \\
0 & , \text { else }
\end{array}\right.
\end{aligned}
$$

3. Let X and Y be independent Gaussian random variables with mean 0 and variance 1. Let $U=a X+b Y$ and $V=c X+d Y$, where $a d-b c \neq 0$.
(a) Are U and V jointly Gaussian? Explain why.
(b) Find the mean, variance, and correlation coefficient of U and V.
(c) Find the joint pdf of U and V.
(d) Find the conditional mean and variance of U given V.
(e) Find the conditional pdf of U given V.

Solution:

(a) X and Y are independent Gaussian random variables, therefore their joint pdf is given by
$f_{X, Y}(x, y)=\frac{1}{2 \pi} \exp \left(\frac{-\left(x^{2}+y^{2}\right)}{2}\right)$,
which is the joint pdf of jointly Gaussian variables. From the notes, linear combinations of jointly Gaussian random variables are also jointly Gaussian random variables. Therefore, U and V are jointly Gaussian random variables.
(b)

$$
\begin{aligned}
\mu_{U} & =\mathbb{E}[U] \\
& =\mathbb{E}[a X+b Y] \\
& =a \mathbb{E}[X]+b \mathbb{E}[Y] \\
& =0
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{U}^{2} & =\operatorname{Var}[U] \\
& =\operatorname{Var}[a X+b Y] \\
& =a^{2} \operatorname{Var}[X]+b^{2} \operatorname{Var}[Y]+2 a b \operatorname{Cov}[X, Y] \\
& =a^{2}+b^{2}
\end{aligned}
$$

Similarly, the mean and variance of V are $\mu_{V}=\mathbb{E}[V]=0$ and $\sigma_{V}^{2}=$ $\operatorname{Var}[V]=c^{2}+d^{2}$.

$$
\begin{aligned}
\operatorname{Cov}[U, V] & =\operatorname{Cov}[a X+b Y, c X+d Y] \\
& =a c \operatorname{Cov}[X, X]+a d \operatorname{Cov}[X, Y]+b d \operatorname{Cov}[Y, X]+b d \operatorname{Cov}[Y, Y] \\
& =a c \operatorname{Var}[X]+b d \operatorname{Var}[Y] \\
& =a c+b d
\end{aligned}
$$

$$
\begin{aligned}
\rho_{U V} & =\frac{\operatorname{Cov}[U, V]}{\sqrt{\operatorname{Var}[U] \operatorname{Var}[V]}} \\
& =\frac{a c+b d}{\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}}
\end{aligned}
$$

(c) Using the density method, we have that (see notes)
$f_{U, V}(u, v)=f_{X, Y}(x(u, v), y(u, v))\left|\frac{\partial(u, v)}{\partial(x, y)}\right|^{-1}$,
where
$x=\frac{d u-b v}{a d-b c}, y=\frac{a v-c u}{a d-b c}$
and

$$
\frac{\partial(u, v)}{\partial(x, y)}=a d-b c \neq 0
$$

$$
\Longrightarrow f_{U, V}(u, v)=f_{X, Y}\left(\frac{d u-b v}{a d-b c}, \frac{a v-c u}{a d-b c}\right) \frac{1}{|a d-b c|}
$$

$$
=\frac{1}{2 \pi} \exp \left(-\frac{(d u-b v)^{2}}{2(a d-b c)^{2}}-\frac{(a v-c u)^{2}}{2(a d-b c)^{2}}\right) \frac{1}{|a d-b c|}
$$

Alternatively, since U and V are jointly Gaussian, the joint pdf of U and V can be expressed as

$$
\begin{aligned}
f_{U, V}(u, v)= & \frac{1}{2 \pi \sqrt{\sigma_{U}^{2} \sigma_{V}^{2}\left(1-\rho_{U V}\right)}} \\
& \exp \left(-\frac{1}{2\left(1-\rho_{U V}\right)}\left(\frac{\left(u-\mu_{U}\right)^{2}}{\sigma_{U}^{2}}+\frac{\left(v-\mu_{V}\right)^{2}}{\sigma_{V}^{2}}-\frac{2 \rho_{U V}\left(u-\mu_{U}\right)\left(v-\mu_{V}\right)}{\sigma_{U} \sigma_{V}}\right)\right),
\end{aligned}
$$

where $\mu_{U}, \mu_{V}, \sigma_{U}^{2}, \sigma_{V}^{2}$, and $\rho_{U V}$ are found as in part (b).
(d) From the notes, we have that

$$
\begin{gathered}
\mu_{U \mid V}(v)=\mu_{U}+\frac{\sigma_{U}}{\sigma_{V}} \rho_{U V}\left(v-\mu_{V}\right) \\
=\frac{a c+b d}{c^{2}+d^{2}} v \\
\sigma_{U \mid V}^{2}= \\
=\frac{\sigma_{U}^{2}\left(1-\rho_{X}^{2} Y\right)}{}=\frac{(a d-b c)^{2}}{c^{2}+d^{2}}
\end{gathered}
$$

(e) From the notes we have that since U and V are jointly Gaussian then U is conditionally Gaussian given V. Therefore the conditional pdf of U given V is given by
$f_{U \mid V}(u \mid v)=\frac{1}{\sqrt{2 \pi \sigma_{U \mid V}^{2}}} \exp \left(-\frac{\left(u-\mu_{U \mid V}(v)\right)^{2}}{2 \sigma_{U \mid V}^{2}}\right)$,
where $\mu_{U \mid V}(v)$ and $\sigma_{U \mid V}^{2}$ are found as in part (d).
4. Let X and Y be random variables with joint pdf:

$$
f_{X, Y}(x, y)=\left\{\begin{array}{cl}
x+y & , 0 \leq x \leq 1,0 \leq y \leq 1 \\
0 & , \text { else }
\end{array}\right.
$$

(a) Find the MAP estimator of X given $Y=y$.
(b) Find the ML estimator of X given $Y=y$.
(c) Find the MMSE estimator of X given $Y=y$.
(d) Find the LMMSE estimator of X given $Y=y$.

Solution:

(a)

$$
\begin{aligned}
f_{Y}(y) & =y+\frac{1}{2}, 0 \leq y \leq 1 \\
f_{X \mid Y}(x \mid y) & =\frac{x+y}{y+\frac{1}{2}}, 0 \leq x, y \leq 1
\end{aligned}
$$

The MAP estimator is given by

$$
\begin{aligned}
\widehat{X}_{M A P}(y) & =\underset{x}{\arg \max } f_{X \mid Y}(x \mid y) \\
& =\underset{x}{\arg \max } \frac{x+y}{y+\frac{1}{2}}, 0 \leq x, y \leq 1 \\
& =1,0 \leq y \leq 1
\end{aligned}
$$

Therefore, $\widehat{X}_{M A P}(y)=1$.
(b)

$$
\begin{aligned}
f_{X}(x) & =x+\frac{1}{2}, 0 \leq x \leq 1 \\
f_{Y \mid X}(y \mid x) & =\frac{x+y}{x+\frac{1}{2}}, 0 \leq x, y \leq 1
\end{aligned}
$$

The ML estimator is given by

$$
\begin{aligned}
\widehat{X}_{M L}(y) & =\underset{x}{\arg \max } f_{Y \mid X}(y \mid x) \\
& =\underset{x}{\arg \max } \frac{x+y}{x+\frac{1}{2}}, 0 \leq x, y \leq 1
\end{aligned}
$$

$f_{Y \mid X}(y \mid x)$ has no critical points as a function of x within $[0,1]$, therefore the maximum must occur at the endpoints. Since, $f_{Y \mid X}(y \mid 0)=2 y$ and $f_{Y \mid X}(y \mid 1)=2 / 3 y+2 / 3, \widehat{X}_{M L}(y)$ is given by

$$
\widehat{X}_{M L}(y)=\left\{\begin{array}{cl}
\frac{2}{3}(y+1) & , 0 \leq y<1 / 2 \\
2 y & , 1 / 2 \leq y \leq 1
\end{array}\right.
$$

(c) The MMSE estimator is given by

$$
\begin{aligned}
\widehat{X}_{M S E}(y) & =\mathbb{E}[X \mid Y=y] \\
& =\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x \\
& =\frac{1}{y+\frac{1}{2}} \int_{0}^{1}\left(x^{2}+x y\right) d x \\
& =\frac{3 y+2}{6 y+3}, 0 \leq y \leq 1
\end{aligned}
$$

(d) The LMMSE estimator is given by

$$
\widehat{X}_{L M M S E}(y)=\mu_{X}+\frac{\sigma_{X}}{\sigma_{Y}} \rho_{X Y}\left(y-\mu_{Y}\right)
$$

The mean, variance, and correlation coefficient of X and Y are : $\mu_{X}=$ $\mu_{Y}=7 / 12, \sigma_{X}^{2}=\sigma_{Y}^{2}=11 / 144, \rho_{X Y}=-1 / 11$. Therefore,

$$
\widehat{X}_{L M M S E}(y)=\frac{7}{12}-\frac{1}{11}\left(y-\frac{7}{12}\right), 0 \leq y \leq 1
$$

