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1 Introduction

The purpose of this homework is to study non-parametric classification tech-
niques. The first question discusses a parametric technique, Fisher’s discrimi-
nant. Then the remaining sections discuss primarily non-parametric techniques:
neural networks, support vector machines, Parzen windows, and the K-nearest
neighbor approaches.

In questions two and three, we shall use grid approaches to explore two-
dimensional spaces. In question 2, this space is the parameter space used for
training the classifier. In question 3, this space is the data space from which
the samples are drawn.



2 Question 1: Fisher’s Discriminant

Fisher’s Discriminant provides a heuristic to describe the separation between
two classes when projected onto a linear one-dimensional subspace,
wT Spw

J(w) =

wT S,w

where Sy, = (mg —my)(ma—m1)" and Sy = 3 . iasses 2oy (T —me) (@ —me)".
Fisher’s discriminant then projects the data so as to minimize this metric. This

minimizing projection is given by
-1
wo = Sy, (Mg —my)

A question raised in class is why the within-class variance, S,,, is necessary.
Can we maximize

T
J(w) = % =w!l Sgw
subject to the constraint that [|w|| = 1 instead? This results in the fairly
intuitive solution
wy = (mg —my)

which simply projects data onto a line parallel to the vector joining the means.
To consider the case where this discriminant might be useful, we construct an
artificial data set similar to one in Bishop’s “Pattern Recognition and Machine
Learning.” We construct two classes in two dimensions, each with a high cor-
relation between the variables, as illustrated in Figure 1. The two classes are
constructed such that they lie very close together, but are still possible to sep-
arate. Furthermore, the means of the classes are carefully arranged so that
projection onto the line connecting the means causes the classes to overlap.
However, in the Fisher line, the classes hardly overlap at all.

How often do data-sets like this occur in practice? It’s difficult to say without
testing on real data or test data that is less contrived.

3 Question 2: Support Vector Machines and Neu-
ral Networks

For this section, we tested neural networks and support vector machines using
the “Diabetes” data set, which contains 765 data points in eight dimensions. All
the dimensions have been scaled to lie in the range [0 1]. Each point is classified
in one of two classes. For neural networks, we used FANN (Fast Artificial Neural
Networks). For support vector machines, we used LibSVM. Both programs are
commonly used and have freely available source code.
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Figure 1: Example of Fisher’s Linear Discriminant. The synthetic data is de-
scribed in the text. The dashed line is the decision surface based on the vector
between the means, The dotted line is the decision surface based on Fisher’s
Discriminant. The decision surfaces are perpendicular to the projection lines
wﬁx = 0 andwd z = 0, and both are defined to intersect the mid-point between
the means.

3.1 Artificial Neural Networks

We use sigmoidal functions, which the default activation functions provided by
FANN: . The output function was also a sigmoid function. We had two output
nodes, representing the two possible classes. We trained the neural network to
produce one for the output when that class was the correct label and zero for
the output when that class was the incorrect layer. When testing the network,
we selected the classification with the highest output to be the class chosen by
the neural network. There are other ways to set up the output of the neural
network, such as using a single output or a soft-max output. (The soft-max
output forces the sum of the outputs to be one.) We believe our network has
similar capabilities to these other output configurations.

3.1.1 Experiment 1

For our first experiment, we divided the data into a training set (384 points)
and a testing set (384 points). We perform a validation search for the best
parameters for the neural network using a 2D grid of parameters. There are
two parameters which we attempted to vary: The number of hidden nodes and
the MSE training error that we used to train the network. We set the maximum
number of epochs high (30,000) so that the training error is always the limiting
factor on training. We tried every combination of these two parameters, yielding
the grid of test cases illustrated with red x’s in Figure 2. Each point on the



grid represents a test using a specific number of hidden nodes and terminating
parameters. For each test, we train the neural network with the specified number
of hidden nodes, using as many epochs as are required to drive the error to the
specified MSE error. We then validate the neural network with the testing
data, predicting the class and comparing it with the true class from the test
set. In this way, we compute the error rate for each combination in the grid.
(Technically we should have used a separate cross-validation set, but it is too
late to run the test again. It takes well over 8 hrs to complete.) The error rates
are plotted using contours which represent equal error curves in Figure 2.

For our final test, we chose to use an MSE termination criterion of 0.13, which
the MSE value of the points in the optimal band in Figure 2. We arbitrarily
chose to use 100 hidden nodes since this did not seem to affect the result.
When we trained the neural network on the training data with these parameters,
it classified 284 of the testing points correctly and, 100 of the testing points
incorrectly. Therefore, the overall error the neural network for this data is
73.9%

3.1.2 Experiment 2

For our second experiment, we wished to find how the size of the training data
and the number of hidden nodes affected the performance of the neural network.
To accomplish this, we split the data into three parts, a training set (384 points),
a cross-validation set (150 points), and a testing set (234 points). The cross-
validation set is used to determine the best parameters for the neural network.
Once these parameters are selected, the testing set may be used to give a final
estimate of the error of the neural networks method.*

We again tested the network on a grid of data points. This time, each red x
in Figure 3 represents an experiment performed with a given number of hidden
units and training data points. For each point, we trained on the training set
and validated the result on the validation set. The error rate on the validation
is again shown using the contours in Figure 3. It is not too surprising that the
error decreases as we increase the amount of training data. However, we were
surprised to discover that changing the number of hidden nodes in the data set
does not seem to have any predictable effect on the performance.

3.2 Support Vector Machines

The LibSVM package allows us to do grid experiments quite easily, with a
python script included with the package called “easy.py” We highly recommend
following the technique used by this script, even if the script itself is not used.
Again, the data is divided into training, validation, and testing sets. Together,
the training and validation sets have 384 points, and the testing set has the
remaining 384 points. The experiment is run on a grid of possible values for

n the end we did not use the testing set at all for Experiment 2, because Experiment 1
provides us with the final test for Neural Networks, so there is no need for a further test of
the neural networks.
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Figure 2: Variation of Error rate with training parameters. There is a sweet
region near the MSE training error of 0.1 (that is, Log; M SE = —1) where the
error rate is minimum. It is visible in this graph as the region between the two
lines marked 0.282. With higher error rates, the training does not go on long
enough. With lower error rates, the neural network overfits the data. Curiously,
the number of hidden nodes appears to have no effect on the validation error
rate. (a) Full test (b) Close-up of best MSE values
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Figure 3: Lack of correlation between the size of the training set and the number
of hidden nodes.

two of the parameters. These two parameters are C' (The penalty parameter for
misclassified points) and v (the scale factor for the RBF kernel). The training
data is actually split into training and validation data several times by the script,
in a process known as cross-validation. An example grid with contour errors is
given in Figure 4.

Based on these cross-validation runs, the best error rate on cross-validation
occurs when C' = 2048, and v = 0.000488 = 5=. When the SVM is trained

2048 *
with these parameters, it achieves a success rate of 80.5%.

3.3 Comparison of Artificial Neural Networks and Sup-
port Vector Machines

Naturally, given the differences between neural networks and support vector ma-
chines, it is impossible to say that one is always better than the other. However,
if a choice had to be made based on our experience in this homework assign-
ment, I would choose support vector machines. There are two reasons that I
would like to do this.

First, support vector machines directly search for the decision surface which
separates the data. A neural network is trained to produce a real-number output
which must be then thresholded to give the classification. Seeking the decision
surface directly, as the support vector machine does, gives an answer that leaves
no question of interpretation.

Second, the parameters used by the support vector machine are easier to
understand intuitively. It is difficult to understand the effect that an individual
hidden node has on the output of a neural network. Indeed, we did not see any
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Figure 4: Training Grid for the Support Vector Machine. The contours represent
the success rate in percent (higher success for the central contour).

change in performance in either of our experiments as we varied the number of
hidden nodes. By contrast, both C' and ~ appear to be related to how mixed
the two classes are, and it appears that the ideal values often satisfy C' = %

So in the future, I will try a support vector machine first. However, it
is important to note that support vector machines are designed for two-class

problems. I'm not sure how well they extend to multi-class problems.

4 Question 3: Parzen Windows and KNN

In this question, we again use the diabetes data-set. We “project” the data to
two dimensions by using the first two dimensions in the diabetes data-set. This
allows us to visualize the results more easily.

4.1 Parzen Windows

We implemented Parzen windows using two windows functions, the cubic and
Gaussian. We vary the size of the windows to test the effect on the data. The
classification error is shown in Figure 5. In this figure, we see over-fitting for
very small windows and under-fitting for larger windows.

Based on this original training error, we select the Gaussian window with a
size of 0.5, and the cubic window with a size of 0.2 for future experiments. When
selecting a window shape, we shall use the Gaussian, because it has an error
rate that is consistently lower than the cubic window. This is intellectually
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Figure 5: Classification error with Parzen windows as window size varies.

satisfying because the Gaussian window gives higher weight to those points
which are closer and which we expect to relate more to the current point.

4.2 K-Nearest Neighbors (KNNN)

To test K-nearest neighbors, we ran K-nearest neighbors on the testing data
with values ranging from 1 to 50, as seen in Figure 6. To my surprise, KNN
continues to give better results as we increase k, even up to k=18. Beyond this
point, we considered the gains to be marginal, so we selected k=18 for use in
future experiments.

4.3 Variation with Training Size

How do Parzen Windows and KNN improve as we increase the amount of data
for training? We test the performance of both methods on data sizes ranging
from 30 to 100 points, as shown in Figure 6. It is interesting to note that
the very simple method of KNN gives a similar error to the Neural Networks
approach, even when it is using only the first two dimensions of the data!

4.4 Decision Surface

We compute the decision surfaces for some of the non-parametric methods dis-
cussed in this question (Question 3). These are shown in Figure 8. We compute
the decision surfaces by classifying each point in a grid with spacing 0.025 in
each dimension. We then draw the contour that separates the points in one
class from the other using a standard contour plotting function.
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Figure 7: Improvement of Parzen Windows and KNN with training size. Nearest
Neighbors has the highest error. KNN (k=18) has the lowest error. Parzen
Windows (h=0.5) gives an error in the middle. NN improves the most as we

increase the amount of data. The other two methods do not appear sensitive to
the amount of training data.6



Figure 8: Decision Surfaces for Non-Parametric Methods. (a) Parzen window,
Gaussian, h=0.5 (b) Parzen window, cubic, h=0.2 (¢) K-nearest neighbors,
k=18, (d) nearest neighbors

It is interesting to see the overfitting showing up so clearly in the nearest
neighbors decision surface (Fig. 8 (d)), as many little islands around each point
in the data. If there is overfitting in the decision surfaces for the Parzen window
methods, it is harder to see. However, we can see that the Parzen window
method defaults to the blue dot class when there are no data points within the
window.

4.5 Comparison of Parzen Window and KNN techniques

The KNN technique gives better performance on the diabetes set than the
Parzen windows technique. I believe this is because the K nearest neighbors
automatically adapts the size of its window to the density of the data in the
neighborhood of the query point. Given its simplicity and accuracy, KNN is a
great method to try on data as a first technique. It may well outperform more
advanced methods like Support Vector Machines. However, it is important to
note that the Nearest Neighbor technique (k=1) does not share the success prop-
erties of KNN. NN will always overfit the training data; by definition it achieves
perfect classification when applied to the training data. Not surprisingly, it
performed the worst of the methods in Question 3.

10



5 Conclusion

In this homework, we have experimented with grid sampling as a numerical
technique. In Question 2, we found grid sampling of classifier parameter space
to be an effective way to select a small number of parameters and to see the
effect these parameters have on performance. In Question 3, we found grid
sampling of the feature space could allow us to visualize the decision surfaces
and the overfitting behavior of classifiers.

Although grid sampling techniques may seem inefficient at first, technology
tends toward such techniques. Years ago, graphical displays were designed by
scanning an electron beam in specially-designed paths to produce letters on the
display. Who would have guessed that today all displays would draw letters by
coloring them in one dot at a time on the screen? In a similar way, sampling
parameter and feature spaces is a simple and effective way to do computations
for low-dimensional spaces.

11
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| Sig , 1)
I/l generate n datatpoints from a Mixture of Gaussians with the means being columns
/l'in the matrix mu and the sigams being diagonal matrices with their diagonals
/l'in the colums of sig. Alpha is the likelihood of each sub-cluster.
1

/' mu-dxk
/l'sig—dxk
/[ alpha - 1 x k matrix
( (size (my (sig )
('mu and sig are not the same size!' )
( (muy 2) ( ,2))
('alpha must be a row vector with the same number of columns as mu'
( ( ( ) 1) 0.0001 )
('alpha should sum to one’ )
[ )I;
( (c,2) 1
( (my 1), n)
1
(1);
( (cor);
('alpha should sum to one. This should never happen' );
(1);
( ze (my 2)) _
('index out of bounds. This should never happen' );

(1,'mn", mu(, ind), (sig (-, ind )));
(.1) i

( 1 1 L
/I Generate n datatpoints from ¢ randomly—selected clases, where each class is a Mix
ture of Gaussians with the means being columns
/l in the matrix mu and the sigams being diagonal matrices with their diagonals
Il in the colums of sig. Alpha is the likelihood of each sub—cluster.
1
/[l Same as multigauss, except that mu,sig,and alpha are three—dimensional, with the
third
/I dimensions representing which class is being represented. Each class must
/I have the same number of clusters, but some clusters may have probability O if
/I desired.
1
/I Additionally, the true class is returned as the "last" dimension of each datapoin

/l E.g. for

1

/I'[21 39 22

/I [3.3 4129

hni1r 2

1

Il ¢ = size(mu,3) = # of classes

1

Imu-dxkxc

/lsig-dxkxc

/lalpha -1 x kxc mixture priors
(

('mu and sig are not the same size!" )

Page 1
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( (my 2) ( 2))

('alpha must be a deep (Sd) row vector with the same number of columns as mu'

( ( ,2) 1) 0.0001))
('alpha should sum to one’ )

( (my -3) _ ,
('must use 3rd dimension' )
(my 3);
( (my 1) 1, n);
1
(1);
( )

( ( 0 )l ( LR )l ( [ )1 1)1

[ ; ]
/I Generate m datasets of multiple—class, multiple—dimension,
/I multiple—gaussian data.
1
/l The means are generated uniformly within "scale"
1
/I d = number of dimensions
/I k = number of clusters in each class
/I ¢ — number of classes
/I m — number of datasets
/I n — number of samples from each dataset.
/I scale - range of means
1
/[ data - (d+1) x n x m —— the datapoints generated
/I the last row is the true clas of the generated point.
/[ parameters — [p x k X ¢ x m] —— the parameters used to generate the data
/I where p is the number of parameters needed to specify a single cluster and is g

iven by
Z p = 2*d+1 (mean (d), sig (d), alpha (1))
2 1
(d-1,n,m;
(p.k,c,m
1
( ’ ’ )l
(d, k,c)
(1,k,c)
( ) (my )
( ) (1, my )

0
( );
( : )
()
(50,'mn' [ 1;1][ 1 .9;.9 1]
(50, 'mn' [1; 1] 1 8:.8 1
[ ; (1,50) 2 (1, 50)]
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/[ data - (d+1) x n —— the labeled datapoints
I/l omega - the fischer decision line.
/I omega*x = 0 is the equation of the line.

/[ omega=S wr-1}
I x_0=wAT (m_1+m_2)
I1'S_w =\sum_{y \in class} (y-m_i)(y_i-m_)"T

/I Assume 2 classes.
1 2,

( :
/I was function plotprettystuff(data,omega)
/I Given the fisher projection line omega,
/I plot the decision surface acording to omega
/I and according to (m2-m1)

/I Assume 2 classes.

, o), di(z, ), o)
(2, ), bx )
// Ilne between means
2,),%) o
) 2; /I midpoint
), my2, ), * )
hatever is input

(2); (1)

(
(
m
)1

(
/1= [n(11
Il plot(ll((l

(oL

/lomega
[

—

1

]
), 12(2, ), '9—" )
[ I;
(
[ (2); (1)]
3 ;
3

[ I
(12(1, ), 12(2, ), 'r=="")
"/home/yoder;j" ;
(0, "/Desktop/tmp.eps” , 1);
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/*
Fast Artificial Neural Network Library (fann)
Copyright (C) 2003 Steffen Nissen (lukesky@diku.dk)

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY:; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more detalils.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*

#include <stdio.h>
#include "fann.h"

#define isone(a) (fabs(a- 1.0 )< 0.001 )
typedef  struct {
int  num_neurons_hidden;
float  desired_error;
int  max_epochs;
int epochs_between_reports;
int activation_function_hidden;
int activation_function_output;
char *trainfile;
char *testfile;
} experiment;

void print_experiment_line(experiment config);

experiment *get_experiment_sequence( char *filename, int  *num);
void read_experiment_line(experiment *config, FILE *file);
int get_num_experiments( FILE *file);
experiment *get_experiment_sequence( char *filename, int  *num)
FILE *fileptr;
int i
experiment *ptr;
it ((fileptr=fopen (filename, " )== 0)
*num = 0;
return  0;
}
else
{ _ :
printf ( "get_num_experiments  \n");
*num = get_num_experiments(fileptr);
printf ( "allocate mem (exp = %09 \n " *num);
ptr = (experiment *) malloc ((*num)* sizeof (experiment));

for (i= 0;i<*num;i++)

printf ( "reading  %d\n" ,i);
read_experiment_line (&ptr[i], fileptr);

}
fclose (fileptr);

return  ptr;
}
}
int get_num_experiments( FILE *file)
{
int  number;
fscanf(file, " %d\n" ,&number);

return  number;
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void read_experiment_line(experiment *config, FILE *file)

{
config—>trainfile = ( char *)malloc ( 20* sizeof (char));
config—>testfile = ( char *) malloc ( 20* sizeof (char ));
fscanf (file, " %d %f %d %d %d %d %s %s\n",

&config—>num_neurons_hidden,
&config—>desired_error,
&config—>max_epochs,
&config—>epochs_between_reports,
&config—>activation_function_hidden,
&config—>activation_function_output,
config—>trainfile,
config—>testfile);

return ;

}
void print_experiment_line(experiment config)

return ;

}

int ann_experiment_driver ( int  num_layers,
int  num_neurons_hidden,
float  desired_error,
int  max_epochs,
int epochs_between_reports,
int activation_function_hidden,
int activation_function_output,
char *trainfile,
char *testfile,
FILE *outputptr)

/[const unsigned int num_layers = 3;
/lconst unsigned int num_neurons_hidden = 32;
/Iconst float desired_error = (const float) 0.0001;
/[const unsigned int max_epochs = 300;
/lconst unsigned int epochs_between_reports = 10;
1
struct  fann *ann;
struct fann_train_data *train_data, *test_data,
long ncorrect= 0, nincorrect= 0;
fann_type *expected_output, *actual_output;
unsigned int i= O;
fprintf(outputptr, "Creating network. \n");
train_data = fann_read_train_from_file(trainfile);
ann = fann_create_standard(num_layers,
train_data—>num_input, num_neurons_hidden, train_data->num_o
utput);
fprintf(outputptr, "Training network. \n");

fann_set_activation_function_hidden(ann, FANN_SIGMOID_SYMMETRIC_STEPWISE);
fann_set_activation_function_output(ann, FANN_SIGMOID_STEPWISE);

/lfann_set_training_algorithm(ann, FANN_TRAIN_INCREMENTAL);

fann_train_on_data(ann, train_data, max_epochs, epochs_between_reports, desi
red_error);

fprintf(outputptr, "Testing network. \n");
test_data = fann_read_train_from_file(testfile);

fann_reset_MSE(ann);
for (i= O;i<fann_length_train_data(test_data); i++)

fann_test(ann, test_data—>input[i], test_data—>output[i]);

actual_output = fann_run(ann, test_data—>input[i]);
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tual_output[

put[ OD)I|
((actual_output[
_output] 1)< 0) && lisone(expected_output] 0]))]
{
printf (
ncorrect++;
}
else
{ _ :
printf( “"incorrect!
nincorrect++;
}
}
fprintf(outputptr, "MSE error on test data:
fprintf(outputptr, "Correct outputs:
fprintf(outputptr, "Incorrect outputs:
fprintf(outputptr, "Saving network. \n");
fprintf(outputptr, "Cleaning up. \n");

}
int

{

Page 3

expected_output = test_data—>outpult]i];

printf ( "actual_output[0]=
0], expected_output[
if  (((actual_output[

fann_destroy_train(train_data);
fann_destroy_train(test_data);
fann_destroy(ann);

return 0;

main (int *argc, char **argv)
experiment *exp_vector;

int  num_experiments;

int i

FILE *outputptr;
outputptr = fopen (argv]| 2], "w");
exp_vector = get_experiment_sequence (argv[

fprintf (outputptr,
for (i= 0; i< num_experiments; i++)
fprintf (outputptr, "Experiment

fprintf (outputptr,

exp_vector[i].num_neurons_hidden,
exp_vector][i].desired_error,
exp_vector[i].max_epochs,
exp_vector[i].epochs_between_reports,
exp_vector|i].activation_function_hidden,
exp_vector]i].activation_function_output,
exp_vector]i].trainfile,
exp_vector]i].testfile);
ann_experiment_driver ( 3,
exp_vector[i].num_neurons_hidden,
exp_vector][i].desired_error,
exp_vector[i].max_epochs,
exp_vector[i].epochs_between_reports,
exp_vector]i].activation_function_hidden,
exp_vector]i].activation_function_output,
exp_vector]i].trainfile,
exp_vector]i].testfile,
outputptr);

%f, expected_output[0]=
0], isone(expected_output] on);
0] - actual_output[

"correct!

"The num of experiments is

%f, isone= %d\n", ac
1 > 0 && isone(expected_out

0] - actual

\n");

\n");

%f\n ", fann_get_MSE(ann));

%d\n", ncorrect);
%d\n", nincorrect);

1], &num_experiments);

%d\n" , num_experiments);

)

" %d %f %d %d %d %d %s %s\n",
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fclose (outputptr);
return  O;
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/I compare parzen window and kNN methods

[ data_train , data_test , label train , label test ] create_gaussian_data_set
(meanl, mean2, covl, cov2, ntrain , ntest )
classl =grand (ntrain , "mn", meanl, covl);
class2 =grand (ntrain , "mn", mean2, cov2);
label_train [ones (1, ntrain ), ones(1, ntrain ) *2];
testl =grand (ntest ,"mn", meanl, covl);
test2 =grand (ntest ,"mn", mean2, cov2);

label_test [ones (1, ntest ), ones(1,ntest )*2];
[ data_train ] merge_from_two_classes (classl , class2 , label train );
[ data_test ] merge_from_two_classes (testl , test2 , label test );
[classl , class2 ] convert_from_labeled_dat (data , label )
classl data (:, label 1);
class2 data (:, label 2);
plot_classes ( data, label
[classl , class2 ] convert_from_labeled_dat (data , label )

plot (classl (1, ), classl (2, ), 'bx" )
plot (class2 (1, ), class2 (2, ), 'x' );

y load_diabetes_file (filename )
prefix ''homelyoderj/Desktop/
path prefix +filename
[fp, err ] mopen( path , 't );
(err)
printf ('error! Could not open'’ path -"\n" );

disp (error );

y mfscant (1, fp , '%f %f %f %f' );
mclose (fp);

[ data_train , data_test , label train , label test ] load_diabetes  (filename )
raw_train load_diabetes_file ('diabetes2.train’ );
raw_test load_diabetes_file ('diabetes2.test' );
data_train (raw_train  ( ,1 2)) ;
label_train (raw train (- ,4) 1) ;
data_test (raw test (,1 2) ;
label_test (raw test (,4) 1) ;

test_parzen_and_knn 0
/lcreate 2D the datasets
llcov = eye (2,2);
/Imeanl1=[0 O]
//mean2=[1.5 1.5]'
/[[data_train, data_test, label_train, label_test] = create_gaussian_data_set(meanl,
mean2, cov, cov, 100, 50);

[ data_train , data test , label train , label test ] load_diabetes  ();
/Iplot data

[ffigure;

clf

plot_classes (data_train , label_train );

xlabel ('dimension 1 (scaled)' )

ylabel ('dimension 2 (scaled)' )

/Ixs2eps(0,"anon/xy_synth.eps",1);

xs2eps (0, "anon/xy_diabetes.eps” , 1);

1

[Itest parzen window for several values of h
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/I (for both kernels)

1

hs [0.1 0.2 05 1 2 4]

11%% Plot 1

error_rates_cubic ones (hs);
i =1: length (hs)
[ predicted_labels ] test parzen_window_class (hs(i), ‘eubic' , data train
t, label train , label test )
[ errorRate , correctClass , wrongClass | testResults  (label_test , predicted_labels
error_rates_cubic (1) errorRate
/lfigure
clf
plot (hs, error_rates cubic N O
title  ("Parzen Window"
xlabel  ("Size of window" )
ylabel  ("Error rate (fractional)" )
xs2eps (0, "anon/parzen_diabetes.eps" , 1);
error_rates_gaussian ones (hs);
i =1: length (hs)
[ predicted_labels ] test_parzen_window_class (hs(1), ‘'gaussian' , data train
test , label train , label test )
[ errorRate , correctClass , wrongClass ] testResults  (label_test , predicted_labels
error_rates_gaussian (1) errorRate
plot (hs, error_rates_gaussian L),
legend  ('hypercubic kernel' , 'gaussian kernel' );

/%% Plot 2

I

/Itest KNN for several values of k
/I (for both kernels)

1

k-1 50;

error_rates_knn ones (k);

i =1: length (k)

[ predicted_labels ] knn(k(i), data train , label_train , data_test );
[ errorRate , correctClass , wrongClass ] testResults  (label_test , predicted_labels
error_rates_knn (1) errorRate

clf

plot (k, error_rates knn ),

title ('KNN" );

xlabel ("k" )

ylabel ("Error rate (fractional)"

xs2eps (0, "anon/knn_diabetes.eps" , 1);

1

/I From here we select the best k for the knn
/[ and the best h and kernel f for the parzen window

1

/[[data_train, data_test, label_train, label_test] = load_diabetes();
k-19;

h-0.5;

parzen_kernel_type "gaussian”

sizes [30 10 100];

error_size_parzen ones (sizes );

error_size_knn ones (sizes );

error_size_nn ones (sizes );

i =1: length (sizes )
/I [data_train, garbagel, label_train, garbage2] = create_gaussian_data_set(meanl,
meanz2, cov, cov, sizes(i), 50);

[ data_train , garbagel , label_train , Qgarbage? ] load_diabetes  ();
data_train data_train  (:, 1:sizes (i));
label_train label_train (,1 sizes (1))

/[create_gaussian_data_set(meanl, mean2, cov, cov, sizes(i), 50);

[ predicted_labels ] knn (k, data_train , label_train , data_test );

Page 2
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[ errorRate , correctClass , wrongClass ] testResults  (label_test , predicted_labels );
error_size_knn (1) errorRate ;
[ predicted_labels ] knn (1, data_train , label_train , data_test );
[ errorRate , correctClass , wrongClass ] testResults  (label test , predicted_labels );
error_size nn (i) errorRate
[ predicted_labels ] test_parzen_window_class (h, parzen_kernel_type , data train , d
ata test , label train , label test )
[ errorRate , correctClass , wrongClass | testResults  (label_test , predicted_labels );
error_size_parzen (1) errorRate ;
clf
plot (sizes , error_size knn , ‘b= );
plot (sizes , error_size nn ;=)
plot (sizes , error_size parzen . k=");
legend ("KNN", "NN", "Parzen, Gaussian" )
xlabel ("Training size (# of points)" );
ylabel ("Error rate" );
xs2eps (0, "anon/train_size_diabetes.eps" , 1);
compute_decision_surf 0

llcov = eye (2,2);

/Imeanl1=[0 0]

/Imean2=[1.5 1.5]'

/l[data_train, data_test, label_train, label_test] = create_gaussian_data_set(meanl,
meanz2, cov, cov, 100, 50);

[ data_train , data_test , label train , label test ] load_diabetes  ();

1[xx,yy] = meshgrid(-3:.2:5);
[ xx, yy] meshgrid (0 .025  1);

grid_points [ocC) sy L

h-0.2;

[ grid_labels ] test_parzen_window_class (h, ‘cubic' , data train , grid points , labe
| train , 2*ones(grid_points (1, :)));

clf

plot_classes (data_train , label train );

grid_labels2 matrix ( grid_labels , size (xx));

contour (xx(1,:), yy(:,1), grid_labels2 [ 1.5 10]);
titte  ('Parzen (cubic, h=0.2)'

xs2eps (0, "anon/parzen_0_2_cubic_surface_diabetes.eps" , 1);
h-05;
[ grid_labels ] test_parzen_window_class (h, 'gaussian' , data_train , grid_points
abel train , 2*ones(grid_points (1, :));
clf
plot_classes (data_train , label train );
grid_labels2 matrix ( grid_labels , Size (xx));
contour (xx(1,:), yy(:,1), grid_labels2 [ 1.5 10));
tile  ('Parzen (gaussian, h=0.5)' )
xs2eps (0, "anon/parzen_0_5 surface_diabetes.eps” , 1);
h=2;
[ grid_labels ] test_parzen_window_class (h, 'gaussian' , data_train , grid_points
abel_train , 2*ones(grid_points (1, )));
clf
plot_classes (data_train , label train );
grid_labels2 matrix ( grid_labels , Size (xx));

contour (xx(1,:), yy(:,1), grid_labels2 [ 1.5 10));
titte  ('Parzen (gaussian, h=2)'
xs2eps (0, "anon/Desktop/parzen_2_surface_diabetes.eps” , 1);
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k- 18;
[ grid_labels ] knn (k, data_train , label_train , grid_points  );
clf
plot_classes (data_train , label_train );
grid_labels2 matrix ( grid_labels , Size (xx));
contour (xx(1,:), yy(:,1), grid_labels2 1.5, 0 10]);
title ('Knn (k=18)' )
xs2eps (0, "anon/knn_surface_diabetes.eps” , 1);
[ grid_labels ] knn (1, data_train , label_train , grid_points  );
clf
plot classes (data train , label train );
grid_labels2 matrix ( grid_labels , Size (xx));

contour (xx(1,:), yy(:,1), grid_labels2 [ 1.5 10));
title  ('NN (k=1)" )
xs2eps (0, "anon/nn_surface_diabetes.eps" , 1);
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function [yl = hypercubic_kernel (u)

[rows, cols ]=size (u);
y=double (and(abs(u) < 1/2,' ));
/ly=double(sum(abs(u) < 1/2,'r") == rows)

endfunction

function [yl = gaussian_kernel  (u)

[d,n] = size (u);
y=zeros (1, n);
for i=1:n
y(i) = gaussian (u(:,1));
end

endfunction

function [y] = gaussian (u)

u=u(:);
d = length (u);
y = exp(=(u™ u)/2)/(( 2*%pi)"(d/ 2));

endfunction

function [pn] = gauss_parzen_window_dens (h, u, V)

[d, n] = size (u);

hn=h/ sqrt (n);

phi = gaussian_kernel  (( u - v*ones(1,n)) /hn)
pn = sum( phi )/ (hn);

endfunction

function [ pn] = cubic_parzen_window_dens (h, u, v)

[d, n] = size (u);

V = h”d;

phi = hypercubic_kernel (( u = v*ones (1, n)) /h)
pn = sum(phi )/ (n*V);

endfunction

function [ pn] = parzen_window_estimate (h, u, v, kernel _type )

if  (kernel_type == 'gaussian’ )
[ pn] = gauss_parzen_window_dens (h, u, v)
else
if  (kernel_type == ‘cubic' )
[ pn] = cubic_parzen_window_dens (h, u,v)
end
end

endfunction

function [class , pl, p2]=runl ()

cov =eye (2, 2);
meanl=[2 2]';
mean2=[ 0 0]";
classl =grand (500, 'mn' , meanl, cov);
class2 =grand (500, 'mn' , mean2, cov);

[class , pl, p2] = clickable_experiment (classl , class2 , ‘cubic' );

endfunction

function [class , pl, p2] = clickable_experiment (classl , class2 , kernel_type )
clf

plot (classl (1,:), classl (2,:), 'bx" );
plot (class2 (1,:), class2 (2,:), X' );

legend ('classl’ | 'class2' );
v = xclick ();
v =v(2:3)";
plot  (v(1), v(2), 'k )
[class , pl, p2] = parzen_window_classifier (1,classl , class2 , v, kernel_type );
endfunction
function [class , pl, p2]=parzen_window_classifier (h, classl , class2 , v, kernel_type
)
pl = parzen_window_estimate (h, classl , v, kernel_type );
p2 = parzen_window_estimate (h, class2 , v, kernel_type );
if (pl >= p2
class = 1;
else
class = 2;

end
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endfunction

function [classl , class2 ] = convert_from_labeled_dat (data , label )
classl = data (:, label == 1);
class2 = data (:, label == 2);

endfunction

function [data ] = merge from_two_classes (classl , class2 , label )
[d1, nl]= size (classl );
[d2, n2]= size (class2 );

data = zeros (dl1, nl+n2);

data (:,label ==1) = classl ;
data (:,label ==2) = class2 ;
endfunction
function [ predicted_labels ] = test parzen_window_class (h, kernel_type , data_train , d
ata_test , label train , label_test )
[ classl_train , class2_train ] = convert_from_labeled_dat (data_train , label_train );
[d, n] = size (label test );
predicted_labels = zeros (1, n);
for i=1:n
[class , pl, p2] = parzen_window_classifier (h, classl_train , Class2_train , data_
test (:,i1), Kkernel_type );
predicted_labels (:,1) = class (:);
end

endfunction
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[ ] (k, :
/I Inspired by the MIT version.
/I Ouput variables initialisation (not found in input variables)
1
Il Input:
/' k =1 x 1 - number of neighbors to consider
/I TrainPattern — d x N — Training vectors
/I TrainLabel — 1 x N — Labels of the classes. Values 1 and 2
I/l TestPattern — d x numTests — Testing vectors
1
Il ...where:
/I d — the number of dimensions
1
/I Output:
/I PredictedLabels — 1 x numTests
1
/I Please note the differences from the MIT version of the script:
/[ * This is for scilab, not matlab
/[ + 1 didn't translate the movie code
/I + mtlb_XXX functions were automatically translated by scilab
/I * | use transposed inputs when compared with MIT.
/[ e.g. MyTrainPattern = MITTrainPattern'
/I this makes vector operations more natural for me
/[ * Some of the code is a bit more vectorized now.

/[ * The best class is computed by voting within the k nearest neighbors.

/I In acase of a tie, | assume class1.

(1, ( » 2));
/I Display mode
(0);
/I Display warning for floating point exception
(1);

/IK-Nearest-Neighbor—-Classifier MatLab Code

/lk—nearest neighbor classifier
/IDetermines distances of all TrainPattern points from TestPattern points
//Outputs TrainLabel associated with nearest TrainPattern point
[ : ] ( ( );
40;
( ( 2)

('Must have at least as many training points as k, points='
,2) k= );

/' L.19: Matlab function moviein not yet converted, original calling sequence use
d

/IM = moviein(K);
1 (1,1)
( ( );
(1,2);

(1, N);
/lcreates specified space for distance column vector

Il set(gca(),"auto_clear","on");
Il llreleases previous plot

I/l plot(TestPattern(1,numTest), TestPattern(2,numTest),"k*");
/I I/begins and holds new plot

/I title("Train Pattern Scatter Plot")

Page 1
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/I set(gca(),"auto_clear","off")
1 /lcreates distance column vector with N rows
( 1 ) ( 7 )7
(1,1) ( )
Il Il Select the two classes for ploting.
/I Trainl = TrainPattern(;,TrainLabel(1,:)<.5);
/I Train2 = TrainPattern(:,~(TrainLabel(1,:)<.5));
/I set(gca(),"auto_clear","off");
/I plot(Train1(1,:),Train1(2,:),"bx");
/I plot(Train2(1,:),Train2(2,:),"rx");
/I legend("test point","Class 0","Class 1");
[ : ] (d); Il decreasing—order sort
/lclindx = mtlb_fliplr(clindx);
/I original translation: gsort
/I original matlab command: sortrows
/ldetermines closest distances and their indices
i (1, N);
/I CLTrainLabels(1,1:N)=TrainLabel(clindx);
( (1 Kk)); /ICLTrainLabels(1,1:(k(1,1)));
/[displays """kth"™"" closest labels
/I disp (Closest_Train_Labels)
/I PredictedLabels = cell();
/INCLTL = k;
( ( ( 1)) 2)
(1, ) L
(1, ) 2
/I halt
/I pause
/I visualizeResults(TrainPattern, TrainLabel, TestPattern, TestLabel,PredictedLabels);
("Done!" )
. . . . 1 . 1 o . L L )
I/l Plot Training data and Testing data with both true & predicted Classifications
/I Computer number of correct and incorrect classifications.
Il Select the two classes for ploting.
: (1, ) 15);
(.« (1, ) 15));
( (1, ) 15),
( (1, ) 1.5));
(), "auto_clear" , "off" );
( (1,7), (2, ) "bx" ),
( (1, ), (2, ), "rx" ),
( (1), (2, ) "bo");
( (1, ) (2, ), "ro" )
(. (1, ) 15);
: (1, ) 15));
( (), "auto_clear" , "off" );
(1, ), (2, ) "0 ),
(1, ), (2, ), "r )
("Train Class 0" , "Train Class 1" , "Pred Class 0" , "Pred Class 1" , "True Class 0
", "True Class 1" )i

(
/Negend("Train Class 0","Train Class 1","Test Class 0","Test Class 1");
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/I Count errors

( ) (
("Test and Pred Label Must be the same size!" )

/I disp("Correct Class")
/I disp(correctClass)
/I disp("Wrong Class")
/I disp(wrongClass)

/I disp("Error Rate")

/I disp(errorRate)



hw2_questi on3_anon. sci Page 1
/I compare parzen window and kNN methods

[ data_train , data_test , label train , label test ] create_gaussian_data_set
(meanl, mean2, covl, cov2, ntrain , ntest )
classl =grand (ntrain , "mn", meanl, covl);
class2 =grand (ntrain , "mn", mean2, cov2);
label_train [ones (1, ntrain ), ones(1, ntrain ) *2];
testl =grand (ntest ,"mn", meanl, covl);
test2 =grand (ntest ,"mn", mean2, cov2);

label_test [ones (1, ntest ), ones(1,ntest )*2];
[ data_train ] merge_from_two_classes (classl , class2 , label train );
[ data_test ] merge_from_two_classes (testl , test2 , label test );
[classl , class2 ] convert_from_labeled_dat (data , label )
classl data (:, label 1);
class2 data (:, label 2);
plot_classes ( data, label
[classl , class2 ] convert_from_labeled_dat (data , label )

plot (classl (1, ), classl (2, ), 'bx" )
plot (class2 (1, ), class2 (2, ), 'x' );

y load_diabetes_file (filename )
prefix ''homelyoderj/Desktop/
path prefix +filename
[fp, err ] mopen( path , 't );
(err)
printf ('error! Could not open'’ path -"\n" );

disp (error );

y mfscant (1, fp , '%f %f %f %f' );
mclose (fp);

[ data_train , data_test , label train , label test ] load_diabetes  (filename )
raw_train load_diabetes_file ('diabetes2.train’ );
raw_test load_diabetes_file ('diabetes2.test' );
data_train (raw_train  ( ,1 2)) ;
label_train (raw train (- ,4) 1) ;
data_test (raw test (,1 2) ;
label_test (raw test (,4) 1) ;

test_parzen_and_knn 0
/lcreate 2D the datasets
llcov = eye (2,2);
/Imeanl1=[0 O]
//mean2=[1.5 1.5]'
/[[data_train, data_test, label_train, label_test] = create_gaussian_data_set(meanl,
mean2, cov, cov, 100, 50);

[ data_train , data test , label train , label test ] load_diabetes  ();
/Iplot data

[ffigure;

clf

plot_classes (data_train , label_train );

xlabel ('dimension 1 (scaled)' )

ylabel ('dimension 2 (scaled)' )

/Ixs2eps(0,"anon/xy_synth.eps",1);

xs2eps (0, "anon/xy_diabetes.eps” , 1);

1

[Itest parzen window for several values of h
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/I (for both kernels)

1

hs [0.1 0.2 05 1 2 4]

11%% Plot 1

error_rates_cubic ones (hs);
i =1: length (hs)
[ predicted_labels ] test parzen_window_class (hs(i), ‘eubic' , data train
t, label train , label test )
[ errorRate , correctClass , wrongClass | testResults  (label_test , predicted_labels
error_rates_cubic (1) errorRate
/lfigure
clf
plot (hs, error_rates cubic N O
title  ("Parzen Window"
xlabel  ("Size of window" )
ylabel  ("Error rate (fractional)" )
xs2eps (0, "anon/parzen_diabetes.eps" , 1);
error_rates_gaussian ones (hs);
i =1: length (hs)
[ predicted_labels ] test_parzen_window_class (hs(1), ‘'gaussian' , data train
test , label train , label test )
[ errorRate , correctClass , wrongClass ] testResults  (label_test , predicted_labels
error_rates_gaussian (1) errorRate
plot (hs, error_rates_gaussian L),
legend  ('hypercubic kernel' , 'gaussian kernel' );

/%% Plot 2

I

/Itest KNN for several values of k
/I (for both kernels)

1

k-1 50;

error_rates_knn ones (k);

i =1: length (k)

[ predicted_labels ] knn(k(i), data train , label_train , data_test );
[ errorRate , correctClass , wrongClass ] testResults  (label_test , predicted_labels
error_rates_knn (1) errorRate

clf

plot (k, error_rates knn ),

title ('KNN" );

xlabel ("k" )

ylabel ("Error rate (fractional)"

xs2eps (0, "anon/knn_diabetes.eps" , 1);

1

/I From here we select the best k for the knn
/[ and the best h and kernel f for the parzen window

1

/[[data_train, data_test, label_train, label_test] = load_diabetes();
k-19;

h-0.5;

parzen_kernel_type "gaussian”

sizes [30 10 100];

error_size_parzen ones (sizes );

error_size_knn ones (sizes );

error_size_nn ones (sizes );

i =1: length (sizes )
/I [data_train, garbagel, label_train, garbage2] = create_gaussian_data_set(meanl,
meanz2, cov, cov, sizes(i), 50);

[ data_train , garbagel , label_train , Qgarbage? ] load_diabetes  ();
data_train data_train  (:, 1:sizes (i));
label_train label_train (,1 sizes (1))

/[create_gaussian_data_set(meanl, mean2, cov, cov, sizes(i), 50);

[ predicted_labels ] knn (k, data_train , label_train , data_test );

Page 2
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[ errorRate , correctClass , wrongClass ] testResults  (label_test , predicted_labels );
error_size_knn (1) errorRate ;
[ predicted_labels ] knn (1, data_train , label_train , data_test );
[ errorRate , correctClass , wrongClass ] testResults  (label test , predicted_labels );
error_size nn (i) errorRate
[ predicted_labels ] test_parzen_window_class (h, parzen_kernel_type , data train , d
ata test , label train , label test )
[ errorRate , correctClass , wrongClass | testResults  (label_test , predicted_labels );
error_size_parzen (1) errorRate ;
clf
plot (sizes , error_size knn , ‘b= );
plot (sizes , error_size nn ;=)
plot (sizes , error_size parzen . k=");
legend ("KNN", "NN", "Parzen, Gaussian" )
xlabel ("Training size (# of points)" );
ylabel ("Error rate" );
xs2eps (0, "anon/train_size_diabetes.eps" , 1);
compute_decision_surf 0

llcov = eye (2,2);

/Imeanl1=[0 0]

/Imean2=[1.5 1.5]'

/l[data_train, data_test, label_train, label_test] = create_gaussian_data_set(meanl,
meanz2, cov, cov, 100, 50);

[ data_train , data_test , label train , label test ] load_diabetes  ();

1[xx,yy] = meshgrid(-3:.2:5);
[ xx, yy] meshgrid (0 .025  1);

grid_points [ocC) sy L

h-0.2;

[ grid_labels ] test_parzen_window_class (h, ‘cubic' , data train , grid points , labe
| train , 2*ones(grid_points (1, :)));

clf

plot_classes (data_train , label train );

grid_labels2 matrix ( grid_labels , size (xx));

contour (xx(1,:), yy(:,1), grid_labels2 [ 1.5 10]);
titte  ('Parzen (cubic, h=0.2)'

xs2eps (0, "anon/parzen_0_2_cubic_surface_diabetes.eps" , 1);
h-05;
[ grid_labels ] test_parzen_window_class (h, 'gaussian' , data_train , grid_points
abel train , 2*ones(grid_points (1, :));
clf
plot_classes (data_train , label train );
grid_labels2 matrix ( grid_labels , Size (xx));
contour (xx(1,:), yy(:,1), grid_labels2 [ 1.5 10));
tile  ('Parzen (gaussian, h=0.5)' )
xs2eps (0, "anon/parzen_0_5 surface_diabetes.eps” , 1);
h=2;
[ grid_labels ] test_parzen_window_class (h, 'gaussian' , data_train , grid_points
abel_train , 2*ones(grid_points (1, )));
clf
plot_classes (data_train , label train );
grid_labels2 matrix ( grid_labels , Size (xx));

contour (xx(1,:), yy(:,1), grid_labels2 [ 1.5 10));
titte  ('Parzen (gaussian, h=2)'
xs2eps (0, "anon/Desktop/parzen_2_surface_diabetes.eps” , 1);
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k- 18;
[ grid_labels ] knn (k, data_train , label_train , grid_points  );
clf
plot_classes (data_train , label_train );
grid_labels2 matrix ( grid_labels , Size (xx));
contour (xx(1,:), yy(:,1), grid_labels2 1.5, 0 10]);
title ('Knn (k=18)' )
xs2eps (0, "anon/knn_surface_diabetes.eps” , 1);
[ grid_labels ] knn (1, data_train , label_train , grid_points  );
clf
plot classes (data train , label train );
grid_labels2 matrix ( grid_labels , Size (xx));

contour (xx(1,:), yy(:,1), grid_labels2 [ 1.5 10));
title  ('NN (k=1)" )
xs2eps (0, "anon/nn_surface_diabetes.eps" , 1);



