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Problem 1:  
     The student mistakenly believed that Fisher criterion ( )J w  is equivalent to its 

numerator ( )N w  in the determination of the optimum direction w: 

i.e., he thought: ( )
T

B
T

W

w S w
J w

w S w
=  is equivalent to ( ) T

BN w w S w=  

     That is not true. In this problem, in part (a) I will first implement an example to show 
a case when ( )J w is much better than ( )N w . Then in part (b), I will theoretically explain 
why the student was confused and what is his missing point. 
 
a) Implementation: Let’s consider the case when two classes distribute as in Fig. 1 
below. 

 
Figure 1: Two classes: class 1 (blue stars) and class 2 (red circles). Both normally 

distribute in 2-D space with the same covariance but different means. 
 
Class 1: mean m1=[3; 6]; 
Class 2: mean m2=[17; 13]; 
Both two classes have the same covariance. 
covar=[5    6;  
       6    10]; 

Using ( )J w as the criterion, we find the optimum direction of Fw :
   

 

 
-6.7963

 
 3.3072Fw

 
=  

 

uur
 

Using ( )N w , we find the optimum direction of Nw : 

-14.1360
 

 -7.1310

  

Nw
 

=  
 

uuur
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The projected data on Fw is shown in Fig. 2 and the projected data on Nw  is shown in 
Fig.3.  

 
Figure 2: Projected data of the two classes on the line Fw determined by Fisher criterion. 

 

 
Figure 3: Projected data of the two classes on the line Nw  determined by only the 

numerator of the Fisher criterion 
 
     Clearly, two projected classes are much better separated on Fw than that on Nw . This 
shows that Fisher criterion is much stronger than only its numerator in this case. 
 
b) Explanation: Let’s look at the meaning of the two criteria: Fisher ( )J w  implies that 
two class means are well separated, measured relatively to the sum of the variances of the 
data of each class. ( )N w , which the student suggested, only guarantees the first term: 

Overlapping region 

Very well separated 
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two class means are well separated. Obviously ( )N w can’t be as strong as Fisher ( )J w  
as shown in the example in part (a). 
     The reason why the student was confused is that since ( )J w is invariant with w  (i.e. 
we can scale w wα= ∗ , whereα  is any scalar number, and the direction of the optimum 
scaled w

ur
 is still the same). Therefore, we can scale w  such that T

Ww S w  in ( )J w equals 1 

and still get the same direction solution as with Fisher. (i.e now ( )J w  becomes ( )N w ).  

     The missing point of the student is that he forgot the condition 1T
Ww S w = . In fact, if 

he wants to use ( )N w  and obtains an equivalent solution as Fisher, he will have to solve 
the following constrained optimization problem: 
  

maximize ( ) T
BN w w S w=  

                                                     Subject to: 1T
Ww S w =  

where the constrain condition is important in determination of the direction of w
ur

. 
Actually, WS affects not only w  but also the direction w

ur
.  

Problem 2: 

     In this problem, I will implement a Support Vector Machine (SVM) classifier in part 
(a) and an Artificial Neural Network (ANN) classifier in part (b). Since both classifiers 
are trained on the same training set and tested on the same testing set, we can compare 
the classification performance of two techniques. The comparison will be presented in 
part (c). I consider the classification performance of a classifier according to its 
misclassification rate and its classification speed.  In (a) and (b) I will also describe how 
to select the parameters for each classifier and the impact of data scaling on their 
classification speed. 
     The data I generated in this problem is two dimensional so we can much easier to 
visualize its distribution, as well as the classification results of two techniques. The data 
set is plotted in Fig. 4, where class 1 is a cloud of blue starts and class 2 is that of red 
circles. As we can see in the figure, two classes overlap a lot on each other and which 
makes linear discrimination techniques fail to classify them. The total sample number in 
class 1 is 10,000 and that is the same in class 2. I pick out from each class 1500 samples 
to build a training set of 3000 samples. The rest in the overall data set is the testing set 
which is plotted in Fig. 5. 
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Figure 4: The distribution of whole data set on 2-D plane 

 

 
Figure 5: The distribution of the testing set with correct labels on 2-D plane. 

 
a) Support Vector Machine: 

 
     The core of the SVM algorithm is to solve the dual quadric programming (QP) 
optimization problem: 

 ( )
1 1 1

1
,

2

n n n

D i i j i j i j
i i j

L y y K x xα α α
= = =

= −∑ ∑∑  

Subject to 
0 i Cα≤ ≤  

1

0
n

i i
i

yα
=

=∑  

where DL : dual Lagrange form, iα : Lagrange multipliers, :n number of training samples, 

,K • • : kernel function, C: regularization parameters, iy : for class 1 it equals -1 and for 
class 2 it equals 1. 
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     We can use the Matlab function quadprog( ) to solve the problem. However, since the 
number of the training set is rather huge (i.e the size of the positive definite matrix in the 
QP is very large), it takes very long time for quadprog( ) to solve this QP. Furthermore, 
because Matlab has a limit in the size of QP which it can solve, in this problem I use 
OSU-SVM library [1] instead. The library OSU-SVM employs “sequential minimal 
optimization” (SMO) algorithm [2] to solve the QP. SMO breaks this large QP problem 
into a series of smallest possible QP problems. These small QP problems are solved 
analytically, which avoids using a time-consuming numerical QP optimization as an inner 
loop. I won’t describe more detail the SMO algorithm since it is beyond the scope of this 
homework. What I will concentrate on is what kernel function I choose and how I select 
the appropriate parameters for this chosen kernel function.  
     Firstly, I try to use a linear kernel to solve the problem. Clearly since two classes 
overlap (non- linearly separated), this classifier fails to classify them (Fig. 6). 
 

 
Figure 6: Classification result when using linear kernel. 

 
     The non- linearity in the relation between the class labels and class attributes suggests 
that we should use a non- linear kernel for the SVM algorithm. There are some possible 
choices for kernel function in OSU-SVM library: polynomial, radial basis function (RBF), 
and sigmoid. I decide to choose RBF for the following reasons: 

- It maps samples to a higher dimension which hopefully can handle the overlap 
case. 

- It can give equal performance to sigmoid with some certain parameters [3]. 
- It has fewer hyper-parameters than polynomial. 
- Finally, it requires less computation than polynomial [4]. 

The RBF has the form: 

( )( , ) exp x x ;  0i jK xi xj γ γ= − − >  

     There are two parameters which I have to determine for the SVM: γ  and C . A 
general way is to use cross-validation technique to determine these two parameters. 
However, in this problem, for the sake of simplicity, I use an alternative way: trial and 
error to search for the optimum γ  and C. Because these two parameters are independent, 
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first I fix C and vary γ  with various values to find the local optimum value γ  which 
locally minimizes the misclassification rate. Then I fix that optimum γ  while varying C 
to find an local optimum C with which the misclassification rate is locally minimum. The 
search range of γ  is 1 to 100, of C is 1 to 20. Figure 7 shows the classification result 
using RBF kernel with the optimum γ =3 and C=1. 

 

 
Figure 7: The classification result using RBF kernel function, no scaling data 

     As we can see in Fig. 7, the classifier does well on the classification performance. The 
misclassification is 11.23%.  
     Using Matlab function tic and toc before and after training and testing functions, 
respectively, I measure the time it takes for these tasks. This shows that the time for 
training is 3.62 seconds while for testing is 3.65 seconds. 
     To speed up the classifier, a technique is scaling the data to a smaller range. In this 
implementation, I scale the  data to the range [0 1] and do again the classification 
including trial and error to find the optimum parameters. (Note that we need to scale both 
training and testing data sets). Figure 8 shows the classification result with scaled data. 
The misclassification rate is 11.29% (similar in Fig. 7) while the time for training and 
testing reduces significantly to 0.614 and 1.804 seconds, respectively. The optimum 
parameters for the RBF in this case are γ =60 and C=5.  
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Figure 8: Classification result using RBF kernel with scaled data. 

 
b) Artificial Neural Network 

     In this part, I will use a feed-forward multi- layer ANN to classify two classes. I use 
back-propagation training, adapting with a gradient-descent momentum approach, to train 
the ANN. Matlab’s artificial neural network is a strong tool for me to solve this problem. 
     The first thing to determine is how many layers in the ANN, how many hidden units, 
and what transfer functions we need. Generally, an ANN with 1 hidden layer is sufficient 
to solve almost all problems. So I use 1 hidden layer ANN for this classification. In [5], 
the author suggests that the hidden unit number should be a number such that the total 

weight number in the network is roughly 
10
n

 (n is number of training samples).  Since we 

have two units in the input layer, two units in the output layers, and 3000 samples in the 
training set, the number of hidden layers can be computed accordingly as: 

3000
1 74

10*4HN = − = , (the bias unit is also taken into account). 74 is a too big number and 

it costs a lot of computation and time when the classification is implemented in Matlab. I 
again use “trial and error” technique to look for an appropriate HN . I search it in the range 
from 5 to 30 and find 20 as the “optimum” number (a compromise between 
misclassification rate and computation time). Thus, the structure of the ANN is (2-20-2). 
I also choose logsig( ) as the transfer function for the hidden layer and purelin( ) for 
output layer. (It turned out that the replacement of tansig( ) for whichever above doesn’t 
affect very much the classification rate in this problem). 

I also vectorize the class category as: class 1 corresponding with output 
1
0

 
 
 

 and class 2 

corresponding with output
0
1

 
 
 

. 

     Figure 9 shows the classification result using the built ANN. The misclassification is 
similar to SVM with RBF in part (a).  
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Figure 9: Classification result using ANN 

 

c) Comparison between two techniques 

     As we see in Fig. 7 and Fig. 9, both techniques give very similar results with the 
training set of 3000 samples. (Actually, SVM is a little bit better). 
To compare further the performance of two techniques, I reduce the training set to 100 
samples while keeping the same testing set of 17000 samples. The following figures 
show the classification results of two techniques in the case of the small training set. 
 

 
Figure 10: Classification using RBF SVM, training set of 100 samples 
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Figure 11: Classification using ANN, training set of 100 samples. 

Figure 10 and Fig. 11 show that RBF SVM performs much better than ANN in this case. 
     The classification speed is also an important  factor which we should consider. While 
we can use tic and toc functions to measure the time the system consumes for training 
and testing in SVM algorithm, unfortunately we can’t do so for ANN in MATLAB. 
When training a network, we can’t disable a pop-up window which updates the training 
progress. The time the system spends on generating and updating this window is 
considerable. We can’t measure this time amount until we access the source codes of the 
toolbox. This access obviously is not recommended. 

Problem 3: 

     In this problem, I will implement Parzel window in part (a), K-nearest neighbor in part 
(b), and nearest neighbor in part (c), and finally will compare their performance in part 
(d). For all techniques I use the reduced training set of 100 samples generated in problem 
2. The testing set is the same as that in problem 2. Both training set and testing set are 
scaled to the range of [0 1] to reduce the complexity of the computation and thus increase 
the classification speed. 
 

a) Parzel window: 
 
     The type and the smoothing parameter of the window are two things I need consider 
firstly in this problem. In practice, the most widely used window is the normal form. In 
this homework, I choose a circle as a Parzel window and determine the smoothing 
parameter according to the suggestion in [6]: 

1
6h nσ

 −  = ∗  

where 
2

2

1

1
2 ii

i

sσ
=

= ∑ ; iis are diagonal elements of the sample covariance matrix of the 

training set; n: the number of samples in the training set. The computed h is 0.0382.   
     The algorithm is based on the larger votes for a class in a circle with h=0.0382, 
centered at a new point, to assign this point to that class. 
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Figure 12 shows the classification using the Parzel window designed above. Note that 
both training and testing sets are scaled to [0 1]. With the reduced training set (100 
samples), the classification is quite good. 
 

 
Figure 12: Classification result using Parzen window (a circle with radius of 0.0382), 

training set of 100 samples. 
 

b) K-nearest neighbor technique  
 
     The algorithm is based on the larger votes for a class in a circle centered at a new 
added point  that covers K training samples. The reader may want to direct to my 
MATLAB codes to see about the algorithm. 
 
     For K nearest neighbor technique, similarly to part (a), the first thing is to determine 
the number K. According to the suggestion in [7], K is determined as follows: 

3 3
8 8100 6K round n round

   
= = =   

   
 

where n=100 is number of the training samples. 
     Similarly to part (a) the algorithm assigns a new point to a certain class based on the 
votes for that class in a window centered at the new point and containing 6 training 
samples. 
     Figure 13 shows the classification result using 6-nearest neighbor technique. The 
misclassification rate is slightly larger than that in part (a). 
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Figure 13: Classification with 6-nearest neighbor technique, training set of 100 samples. 
 

c) Nearest neighbor technique  

     This actually is a specific case of K-nearest neighbor technique where K=1. The 
classification is shown in Fig. 14 below.  

 

 
Figure 14: Classification using nearest neighbor technique, training set of 100 samples 

d) Comparison of three techniques:  

     We can see the K-nearest neighbor and Parzel window provide very similar result. 
And compared to problem 2, with the small training set (100 samples) these two 
techniques perform even better than ANN.  
The nearest neighbor gives the poorer result compared to the two above. However it 
requires less computation costs. 
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MATLAB codes: 
 
%ECE 662, HW2 Prob 1, the demonstration of the strength of Fisher vs 
its 
%numerator 
clear all; 
clc; 
hold off; 
close all; 
m1=[3; 6]; 
covar1=[5    6;  
        6    10]; 
omega1= mvnrnd(m1,covar1,1000); 
omega1=omega1'; 
m2=[17; 13]; 
omega2= mvnrnd(m2,covar1,1000); 
omega2=omega2'; 
  
%Plot the data 
figure(1); 
plot(omega1(1,:),omega1(2,:),'*b',omega2(1,:),omega2(2,:),'or'); 
grid on; 
  
[m_turde1 sigma1]=mle_1(omega1); 
[m_turde2 sigma2]=mle_1(omega2); 
  
S_w=(1/(2000-2))*(1000*sigma1+1000*sigma2); 
  
%Fisher 
w_F=inv(S_w)*(m_turde1-m_turde2); 
proj_F1=(w_F'*omega1)./norm(w_F); % projection 
proj_F2=(w_F'*omega2)./norm(w_F); 
figure(2); 
plot(proj_F1,zeros(1,1000),'*b',proj_F2,zeros(1,1000),'or'); % Project 
the data on the line 
ylim([-1,2]); 
  
%no_Fisher 
w_0=m_turde1-m_turde2; 
  
proj_01=(w_0'*omega1)./norm(w_0); 
proj_02=(w_0'*omega2)./norm(w_0); 
figure(3); 
plot(proj_01,zeros(1,1000),'*b',proj_02,zeros(1,1000),'or');  % Project 
the data on the line 
ylim([-1,2]); 
  
 % ECE 662 HW2 
% Generate data for problem 2 and problem 3 
clear all; 
clc; 
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hold off; 
% the case of 2-D vector 
m1=[3; 6]; 
covar1=[1.4370    0.8615 
        0.8615    8.3650]; 
covar1=covar1*5; 
  
m2=[5;10]; 
covar2=[5.1492    2.3820  
        2.3820    1.8606 ]; 
  
omega1= mvnrnd(m1,covar1,10000); 
omega2= mvnrnd(m2,covar2,10000); 
train=[omega1(1:1500,:)' omega2(1:1500,:)'] ; 
label=[zeros(1,1500) ones(1,1500)]; 
test_set=[omega1(1501:end,:)' omega2(1501:end,:)']; 
label2=[zeros(1,8500) ones(1,8500)]; 
  
clear m1 m2 covar1 covar2; 
save data 
 
 
%Prob 2a1 
%This shows SVM using linear kernel 
clear all; 
clc; 
hold off; 
%load data 
load data; 
  
  
%build linear classifier 
  
[AlphaY, SVs, Bias, Parameters, nSV, nLabel] = LinearSVC(train_set, 
label); % This function is from OSU-SVM library 
  
figure(1); 
plot(test_set(1,1:8500),test_set(2,1:8500),'*b',test_set(1,8501:end),te
st_set(2,8501:end),'or'); 
title('The testing set with the correct labels'); 
Xlabel('x1'); 
Ylabel('x2'); 
legend('Class 1','Class 2'); 
  
[ClassRate, DecisionValue, Ns, ConfMatrix, PreLabels]= 
SVMTest(test_set, label2, AlphaY, SVs, Bias,Parameters, nSV, nLabel); 
  
%Compute misclassification rate 
omega_1=[]; 
omega_2=[]; 
err1=0; 
err2=0; 
for i=1:8500 
    if(PreLabels(i)) 
        err1=err1+1; 
        omega_2=[omega_2 test_set(:,i)]; 
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    else 
        omega_1=[omega_1 test_set(:,i)]; 
         
    end 
    if(PreLabels(i+8500)) 
        omega_2=[omega_2 test_set(:,i+8500)]; 
    else 
        err2=err2+1; 
        omega_1=[omega_1 test_set(:,i+8500)]; 
  
       
    end 
end 
err=((err1+err2)/17000)*100; 
figure(2); 
plot(omega_1(1,:), omega_1(2,:),'b*',omega_2(1,:), omega_2(2,:),'ro'); 
title(['Classification result with linear Kernel SVM, the 
misclassification is ' num2str(err,'%2.3f') '%']); 
Xlabel('x1'); 
Ylabel('x2'); 
legend('Class 1','Class 2');         
         
 
 
%Prob 2a2 
%ECE 662 
%SVM using RBF 
clear all; 
clc; 
hold off; 
load data 
  
%scaling data to [0 1] 
overal_data=scale_data([train_set test_set],0,1); 
train_set=overal_data(:,1:3000); 
test_set=overal_data(:,3001:end); 
  
% train_set=[train_set(:,1:50) train_set(:,2951:end)]; <==this code 
will be 
% used when training a reduced training set 
% label=[label(:,1:50) label(:,2951:end)]; 
  
  
% The best optimum parameters found by trial and error method 
%scalling Gamma=50 C=6 are the best paras 
%no scalling Gamma=3 C=1 are the best paras 
  
tic; 
[AlphaY, SVs, Bias, Parameters, nSV, nLabel] = RbfSVC(train_set, 
label,50,6); 
toc 
tic; 
[ClassRate, DecisionValue, Ns, ConfMatrix, PreLabels]= 
SVMTest(test_set, label2, AlphaY, SVs, Bias,Parameters, nSV, nLabel); 
toc 
omega_1=[]; 
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omega_2=[]; 
err1=0; 
err2=0; 
for i=1:8500 
    if(PreLabels(i)) 
        err1=err1+1; 
        omega_2=[omega_2 test_set(:,i)]; 
    else 
        omega_1=[omega_1 test_set(:,i)]; 
         
    end 
    if(PreLabels(i+8500)) 
       omega_2=[omega_2 test_set(:,i+8500)]; 
    else 
       err2=err2+1; 
       omega_1=[omega_1 test_set(:,i+8500)]; 
    end 
end 
  
err=((err1+err2)/17000)*100; 
figure(3); 
plot(omega_1(1,:), omega_1(2,:),'b*',omega_2(1,:), omega_2(2,:),'ro'); 
% title(['Classification result with RBF Kernel SVM, no scaling, the 
misclassification is ' num2str(err,'%2.3f') '%']); 
title(['Classification result with RBF Kernel SVM, scaling, the 
misclassification is ' num2str(err,'%2.3f') '%']); 
Xlabel('x1'); 
Ylabel('x2'); 
legend('Class 1','Class 2');         
         
%Prob2b 
%Using Neural network for classification 
% Large training set 3000 samples 
clear all; 
clc; 
hold off; 
close all; 
load data 
  
% will be used in the case of reducing training set 
% train_set=[train_set(:,1:50) train_set(:,2951:end)]; 
% target=[ones(1,50) zeros(1,50);zeros(1,50) ones(1,50)]; 
  
PR=minmax(overall_data); 
% vectorize the ouputs 
target=[ones(1,1500) zeros(1,1500);zeros(1,1500) ones(1,1500)]; 
%determine the number of hidden units: 
net = newff(PR,[20 2],{'tansig' 'purelin'}); 
% training 
net.trainParam.epochs = 500; 
net.trainParam.goal = 0.01; 
  
tic; 
net = train(net,train_set,target); 
toc 
  
tic; 
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Y = sim(net,test_set); 
toc 
omega_1=[]; 
omega_2=[]; 
err1=0; 
err2=0; 
for i=1:8500 
    if (Y(1,i)>=Y(2,i)) 
        omega_1=[omega_1 test_set(:,i)]; 
    else 
        omega_2=[omega_2 test_set(:,i)]; 
        err1=err1+1; 
    end 
     
    if (Y(1,i+8500)<=Y(2,i+8500)) 
        omega_2=[omega_2 test_set(:,i+8500)]; 
    else 
        omega_1=[omega_1 test_set(:,i+8500)]; 
        err2=err2+1; 
    end 
end 
         
err=(err1+err2)/170;     
figure (2); 
  
plot(omega_1(1,:), omega_1(2,:),'b*',omega_2(1,:), omega_2(2,:),'ro'); 
title(['Classification result of the testing set, without scaling 
missclassfication is ' num2str(err,'%2.3f') '%']); 
% title(['Classification result of the testing set, scaling, 
missclassfication is ' num2str(err,'%2.3f') '%']); 
xlabel('x1'); 
xlabel('x2'); 
legend('Class 1','Class 2'); 
  
 
%This function is to scale data to a smaller range 
function scaled=scale_data(data,min_lev, max_lev) %work for 2_D data 
  
min_data=min(min(data)); 
max_data=max(max(data)); 
dist1=max_data-min_data; 
dist2=max_lev-min_lev; 
  
scaled=(((data-min_data).*dist2)./dist1)+min_lev; 
  
 
%This is to compute the smoothness for Parzel window using Silverman 
(1986); this works well 
%for normal-distribution 
function h=h_compute(data) 
  
mean_data=mean(data,2); 
mean_data=repmat(mean_data,1,100); 
A=data-mean_data; 
B=A*A'; 
B=B./size(data,2); 
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sigma=mean([B(1,1) B(2,2)]); 
h=sqrt(sigma)*(size(data,2).^(-1/6)); 
  
  
%ECE 662 
%ECE K-nearest 
%K nearest neighbor (part b, probelm 3, HW2) 
clear all; 
clc; 
hold off; 
close all; 
load data 
  
%scaling data to increase the speed 
train_set=[train_set(:,1:50) train_set(:,2951:end)]; 
label=[zeros(1,50) ones(1,50)]; 
overall_data=scale_data([train_set test_set],0,1); 
train_set=overall_data(:,1:100); 
test_set=overall_data(:,(end-17000):end); 
  
  
K=round((100)^(3/8)); % choose the number K according to Enas and 
Choice (1986) 
  
omega_1=[]; 
omega_2=[]; 
err1=0; 
err2=0; 
for i=1:17000 
     arr_tmp=[]; 
     for j=1:100 
        arr_tmp=[arr_tmp norm(test_set(:,i)-train_set(:,j))]; 
     end 
     [B idx]=sort(arr_tmp); %idx is the index array sorted by the 
values of the arr_tmp 
     vote1=0; %vote for class 1; 
     vote2=0; %vote for class 2; 
     for k=1:K 
             if (~label(idx(k))) 
                vote1=vote1+1; 
  
             else 
                vote2=vote2+1; 
             end 
     end 
  
     if(i<=8500) 
         if (vote1>=vote2) % correct classification 
             omega_1=[omega_1 test_set(:,i)]; 
         else %wrong classification 
             omega_2=[omega_2 test_set(:,i)]; 
             err1=err1+1;  
         end 
     else 
        if (vote1 < vote2) % correct classification 
             omega_2=[omega_2 test_set(:,i)]; 
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         else %wrong classification 
             omega_1=[omega_1 test_set(:,i)]; 
             err2=err2+1;  
         end 
     end 
end 
  
err=(err1+err2)/170; 
plot(omega_1(1,:), omega_1(2,:),'b*',omega_2(1,:), omega_2(2,:),'ro'); 
title(['Classification with K-nearest method, the misclassification is 
' num2str(err,'%2.3f') '%']); 
Xlabel('x1'); 
Ylabel('x2'); 
legend('Class 1','Class 2');         
 
%ECE 662, part c, problem 3, HW 2 
%Nearest Neighbor Technique 
clear all; 
clc; 
hold off; 
close all; 
load data 
  
%scaling data to increase the speed 
train_set=[train_set(:,1:50) train_set(:,2951:end)]; 
label=[zeros(1,50) ones(1,50)]; 
overall_data=scale_data([train_set test_set],0,1); 
train_set=overall_data(:,1:100); 
test_set=overall_data(:,(end-17000):end); 
  
  
K=1;% nearest neighborhood 
  
omega_1=[]; 
omega_2=[]; 
err1=0; 
err2=0; 
for i=1:17000 
     arr_tmp=[]; 
     for j=1:100 
        arr_tmp=[arr_tmp norm(test_set(:,i)-train_set(:,j))]; 
     end 
     [B idx]=sort(arr_tmp); %idx is the index array sorted by the 
values of the arr_tmp 
     vote1=0; %vote for class 1; 
     vote2=0; %vote for class 2; 
     for k=1:K 
             if (~label(idx(k))) 
                vote1=vote1+1; 
  
             else 
                vote2=vote2+1; 
             end 
     end 
  
     if(i<=8500) 
         if (vote1>=vote2) % correct classification 
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             omega_1=[omega_1 test_set(:,i)]; 
         else %wrong classification 
             omega_2=[omega_2 test_set(:,i)]; 
             err1=err1+1;  
         end 
     else 
        if (vote1 < vote2) % correct classification 
             omega_2=[omega_2 test_set(:,i)]; 
         else %wrong classification 
             omega_1=[omega_1 test_set(:,i)]; 
             err2=err2+1;  
         end 
     end 
end 
  
err=(err1+err2)/170; 
plot(omega_1(1,:), omega_1(2,:),'b*',omega_2(1,:), omega_2(2,:),'ro'); 
title(['Classification with nearest neighbor method, misclassification 
is ' num2str(err,'%2.3f') '%']); 
Xlabel('x1'); 
Ylabel('x2'); 
legend('Class 1','Class 2');         
         
%Part a Probelm 3 HW 2 
% Parzel window 
clear all; 
clc; 
hold off; 
close all; 
load data 
  
%scaling data to increase the speed 
train_set=[train_set(:,1:50) train_set(:,2951:end)]; 
label=[zeros(1,50) ones(1,50)]; 
overall_data=scale_data([train_set test_set],0,1); 
train_set=overall_data(:,1:100); 
test_set=overall_data(:,(end-17000):end); 
  
  
h=h_compute(train_set); % using Silverman (1986) to compute the 
smoothness para of the window 
% h=h/2; 
omega_1=[]; 
omega_2=[]; 
err1=0; 
err2=0; 
for i=1:17000 
     arr_tmp=[]; 
     for j=1:100 
        arr_tmp=[arr_tmp norm(test_set(:,i)-train_set(:,j))]; 
     end 
     [B idx]=sort(arr_tmp); %idx is the index array sorted by the 
values of the arr_tmp 
     K=find(B>h,1,'first')-1; % Using a circle with radian=h as the 
Perzen windonw 
     if (isempty(K) || K==0) % no training sample in the window, assign 
it to class 1 
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        omega_1=[omega_1 test_set(:,i)]; 
        if (i>8500) 
            err2=err2+1; 
        end 
     else          
         idx=idx(1:K); 
         vote1=0; %vote for class 1; 
         vote2=0; %vote for class 2; 
         for k=1:K 
                 if (~label(idx(k))) 
                    vote1=vote1+1; 
                 else 
                    vote2=vote2+1; 
                 end 
         end 
  
         if(i<=8500) 
             if (vote1>=vote2) % correct classification 
                 omega_1=[omega_1 test_set(:,i)]; 
             else %wrong classification 
                 omega_2=[omega_2 test_set(:,i)]; 
                 err1=err1+1;  
             end 
         else 
            if (vote1 < vote2) % correct classification 
                 omega_2=[omega_2 test_set(:,i)]; 
             else %wrong classification 
                 omega_1=[omega_1 test_set(:,i)]; 
                 err2=err2+1;  
             end 
         end 
     end 
end 
  
err=(err1+err2)/170; 
plot(omega_1(1,:), omega_1(2,:),'b*',omega_2(1,:), omega_2(2,:),'ro'); 
title(['Classification with Parzen window method, misclassification is 
' num2str(err,'%2.3f') '%']); 
Xlabel('x1'); 
Ylabel('x2'); 
legend('Class 1','Class 2');         
  
 
         
         
             
          
 


