Problem 1:
The student mistakenly believed that Fisher criterion J(w) is equivalent to its

numerator N (w) in the determinationof the optimum directionw:

.
i.e.,, he thought: J(w) = WTSBW isequivalentto N(w)=w' Sw
w §w

That is not true. In this problem, in part (&) | will first implement an example to show
acase when J(w)is much better thanN (w) . Thenin part (b), | will theoretically explain
why the student was confused and what is his missing point.

a) Implementation: Let's consider the case when two classes distribute asin Fig. 1
below.

= : : : : :

Figure 1: Two classes: class 1 (blue stars) and class 2 (red circles). Both normally
distribute in 2-D space with the same covariance but different means.

Class 1: nean nml=[3; 6];
Class 2: nean nm2=[17; 13];
Both two cl asses have the sanme covari ance.
covar=[5 6;
6 10];

Using J(w) as the criterion, we find the optimum direction of w :
= &-6.7963y
F T §330724
Using N (w), we find the optimum direction of w, :

- _ 61413600
N & -7.13108

The projected data onw; is shown in Fig. 2 and the projected data onw,, is shown in
Fig.3.

Projected data on the line w determined using Fisher criterion

08} b
06+ B
0.4 B

Very well separated
o2t .

0zt -
04} .

06 b

Figure 2: Projected data of the two classes on the line w. determined by Fisher criterion.

Projected data of two classes on the line determined by just the numerator of Fisher
1

nat]
06-]
04k Overlapping region |
02+]

0 h O S S N - £+
02t .
04t]
0B]

08+ b

_1 1 1 1 1 1 1 1
-35 -30 -25 -20 -15 -10 5 0 5

1-0n projected data

Figure 3: Projected dataof the two classes on the line w,, determined by only the
numerator of the Fisher criterion

Clearly, two projected classes are much better separated on w;. than that onw, . This
shows that Fisher criterion is much stronger than only its numerator in this case.

b) Explanation: Let’s look at the meaning of the two criteria: Fisher J(w) implies that
two class means are well separated, measured relatively to the sum of the variances of the
data of each class. N(w), which the student suggested, only guarantees the first term:

two class means are well separated. Obviously N (w)can't be as strong as Fisher J(w)
as shown in the example in part (a).

The reason why the student was confused is that since J(w) is invariant with w (i.e.
we can scalew=a* w, wherea is any scalar number, and the direction of the optimum
scaled w is till the same). Therefore, we can scale w such that w' Sw in J(w)equals1

and till get the same direction solution as with Fisher. (i.e now J(w) becomes N(w)).
The missing point of the student is that he forgot the conditionw" §, w=1. In fact, if

he wantsto use N (W) and obtains an equivalent solution as Fisher, he will haveto solve
the following constrained optimization problem:

maximize N (w) = w' S,w

Subjectto: w' §,w=1
where the constrain condition is important in determination of the direction of w.
Actually, S, affectsnot only [w| but also the directionw.

Problem 2:

In this problem, | will implement a Support Vector Machine (SVM) classifier in part
(@) and an Artificial Neural Network (ANN) classifier in part (b). Since both classifiers
are trained on the same training set and tested on the same testing set, we can compare
the classification performance of two techniques The comparison will be presented in
part (c). | consider the classification performance of a classifier according to its
misclassification rate and its classification speed. In (@) and (b) | will also describe how
to select the parameters for each classifier and the impact of data scaling on their
classification speed.

The data | generated in this problem is two dimensional so we can much easier to
visualize its distribution, as well as the classification results of two techniques. The data
st is plotted in Fig. 4, where class 1 is a cloud of blue starts and class 2 is that of red
circles. As we can see in the figure, wo classes overlap a lot on each other and which
makes linear discrimination techniques fail to classify them. The total sample number in
class 1 is 10,000 and that is the same in class 2. | pick out from each class 1500 samples
to build a training set of 3000 samples. The rest in the overal data set is the testing set
which is plotted in Fig. 5.

The overall distribution of two classes on 2-D plane
30 T T

Class 1

Class 2
20F i : B

20t * .

-30
-10

|
=
m
=
o

il

Figure 4: The distribution of whole data set on 2-D plane

30

The testing set with the correct labels

Class 1

b Class 2
ok g 3 a

W2
(]

20t * .

-30
-10

|
=
m
=
o

il

Figure5: The distribution of the testing set with correct labels on 2-D plane.

a) Support Vector Machine:

The core of the SVM agorithm is to solve the dua quadric programming (QP)
optimization problem:

S 18 ¢
L =aa--a aaiajyiyjK()ﬁ’Xj)
i=1 275 =
Subject to
0fa £C
é.aiyi =0
i=1

where L, : dua Lagrange form, a,: Lagrange multipliers, n:number of training samples,

K (: > kernel function, C: regularization parameters, v.: for class 1 it equals -1 and for
class2 it equals 1.

We can use the Matlab function quadprog() to solve the problem. However, since the
number of the training set is rather huge (i.e the size of the positive definite matrix in the
QPis very large), it takes very long time for quadprog() to solve this QP. Furthermore,
because Matlab has a limit in the size of QP which it can solve, in this problem | use
OSU-SVM library [1] instead. The library OSU-SVM employs “sequential minimal
optimization” (SMO) agorithm [2] to solve the QP. SMO breaks this large QP problem
into a series of smallest possible QP problems. These small QP problems are solved
anaytically, which avoids using a time-consuming numerical QP optimization as an inner
loop. | won't describe more detail the SMO algorithm since it is beyond the scope of this
homework. What | will concentrate on is what kernel function | choose and how | select
the appropriate parameters for this chosen kernel function.

Firstly, | try to use a linear kernel to solve the problem. Clearly since two classes
overlap (nonlinearly separated), this classifier failsto classify them (Fig. 6).

Classification result with linear Kermel S%M, the misclassification is 25.424%

+ Class 1

O Class 2
S O

20F

W2
(]

20t +

il

Figure 6: Classification result when using linear kerndl.

The nontlinearity in the relation between the class labels and class attributes suggests
that we should use a nonlinear kernel for the SVM algorithm. There are some possible
choices for kernel function in OSU-SVM library: polynomial, radia basis function (RBF),
and sigmoid. | decide to choose RBF for the following reasons:

- It maps samples to a higher dimension which hopefully can handle the overlap
case.

- It can give equa performance to sigmoid with some certain parameters [3].

- It has fewer hyper-parametersthan polynomial.

- Finally, it requires less computation than polynomial [4].
The RBF has the form:

K(xi,xj):exp(- gl - xj"); g>0
There are two parameters which | have to determine for the SYM: g and C. A

genera way is to use cross-validation technique to determine these two parameters.
However, in this problem, for the sake of simplicity, | use an aternative way: trial and
error to search for the optimum g and C. Because these two parameters are independent,

5

first | fix C and vary g with various values to find the loca optimum value g which
locally minimizes the misclassification rate. Then | fix that optimum g while varying C
to find an local optimum C with which the misclassification rate is locally minimum. The
search range of g is1 to 100, of Cis 1 to 20. Figure 7 shows the classification result
using RBF kernel withthe optimum g=3 and C=1.

Clagsification result with RBF Kemel %M, no scaling, the misclassification is 11.235%

* Class 1

Fhpe Class 2
20+ ; B

W2
(]

a0l d

=
n
o
m
—
o
o

1

Figure 7: The classification result using RBF kernel function, no scaling data

Aswe can seein Fig. 7, the classifier does well on the classification performance. The
misclassification is 11.23%.

Using Matlab function tic and toc before and after training and testing functions,
respectively, | measure the time it takes for these tasks. This shows that the time for
training is 3.62 seconds while for testing is 3.65 seconds.

To speed up the classifier, a technique is scaling the data to a smaller range. In this
implementation, | scale the data to the range [0 1] and do again the classification
including trial and error to find the optimum parameters. (Note that we need to scale both
training and testing data sets). Figure 8 shows the classification result with scaled data.
The misclassification rate is 11.29% (similar in Fig. 7) while the time for training and
testing reduces significantly to 0.614 and 1.804 seconds, respectively. The optimum
parameters for the RBF in this case areg =60 and C=5.

Classification result with REF Kemel SvM, Scaling, the misclassification is 11.284%

1 T T 4 Tk

Class 1

03¢ o Class 2]

nat -
07t Fl .

06} ,]

W2

0&¢ . .
4t ' ' .
03F + ++ ,. -
02+ gril . 4
0.1+ + B

D 1 1 1 * 1 1 1 1 1
025 03 03 04 045 05 055 06 0BS5S 07 075
w1

Figure 8: Classification result using RBF kernel with scaled data.

b) Artificial Neural Network

In this part, | will use a feed-forward multi-layer ANN to classify two classes. | use
back- propagation training, adapting with a gradient-descent momentum approach, to train
the ANN. Matlab's artificia neura network is a strong tool for me to solve this problem.

The first thing to determine is how many layers in the ANN, how many hidden units,
and what transfer functions we need. Generally, an ANN with 1 hidden layer is sufficient
to solve amost all problems. So | use 1 hidden layer ANN for this classification In [5],
the author suggests that the hidden unit number should be a number such that the total

weight number in the network is roughly 1—% (n is number of training samples). Since we

have two units in the input layer, two units in the output layers, and 3000 samples in the
training set, the number of hidden layers can be computed accordingly as:

- 3000 1=74, (the bias unit is a so taken into account). 74 is a too big number and

"10%4

it costs alot of computation and time when the classification is implemented in Matlab. |
again use “trial and error” technique to look for an appropriate N, . | search it in the range
from 5 to 30 and find 20 as the “optimum” number (a compromise between
misclassification rate and computation time). Thus, the structure of the ANN is (2-20-2).
| dso choose logsig() as the transfer function for the hidden layer and purelin() for
output layer. (It turned out that the replacement of tansig() for whichever above doesn’t
affect very much the classification rate in this problem).

| also vectorize the class category as: class 1 corresponding with output gﬂ and class 2
u

corresponding with output gﬂ
u

Figure 9 shows the classification result using the built ANN. The misclassification is
similar to SVM with RBF in part (a).

Clagsification result of the testing set, ANM, no scaling, missclassfication iz 11.541%

30
* Class 1
o o} CIassQ
20+ £ b
10+ o
N *
* *
0r ¥ *; B
+ %%
0k # 4
* -k
*
20k * E
_30 1 1
-10 A 0 10 15
W2

c¢) Comparison between two techniques

Figure 9: Classification result using ANN

As we see in Fig. 7 and Fig. 9, both techniques give very similar results with the
training set of 3000 samples. (Actually, SVM is alittle bit better).
To compare further the performance of two techniques, | reduce the training set to 100
samples while keeping the same testing set of 17000 samples. The following figures
show the classification results of two techniques in the case of the small training set.

Classification result, RBF SWM, reduced training set, misclassification is 15.518%

W2

20k

-30

20F

Class 1
Class 2

-10

|
o

®1

15

Figure 10: Classification using RBF SV M, training set of 100 samples

Classification, ANM, reduced training set, missclassfication is 27.529%
30 T T

20F

20k

W2

Figure 11: Classification using ANN, training set of 100 samples.

Figure 10 and Fig. 11 show that RBF SVM performs much better than ANN in this case.

The classification speed is also an important factor which we should consider. While
we can use tic and toc functions to measure the time the system consumes for training
and testing in SVM agorithm, unfortunately we can’t do so for ANN in MATLAB.
When training a network, we can’'t disable a pop-up window which updates the training
progress. The time the system spends on generating and updating this window is
considerable. We can't measure this time amount until we access the source codes of the
toolbox. This access obvioudly is not recommended.

Problem 3:

In this problem, | will implement Parzel window in part (a), K-nearest neighbor in part
(b), and nearest neighbor in part (c), and finally will compare their performance in part
(d). For all techniques | use the reduced training set of 100 samples generated in problem
2. The testing set is the same as that in problem 2. Both training set and testing set are
scaled to the range of [0 1] to reduce the complexity of the computation and thus increase
the classification speed.

a) Parzel window:

The type and the smoothing parameter of the window are two things | need consider
firstly in this problem. In practice, the most widely used window is the normal form. In
this homework, | choose a circle as a Parzel window and determine the smoothing
parameter according to the suggestion in [6]:

®elo

h=s *nf 65

2
where s ? :%601 S, ; §; are diagonal elements of the sample covariance matrix of the
i=1
training set; n: the number of samplesin the training set. The computed his0.0382.
The algorithm is based on the larger votes for a class in a circle with h=0.0382,
centered at anew point, to assign this point to that class.

Figure 12 shows the classification using the Parzel window designed above. Note that
both training and testing sets are scaled to [0 1]. With the reduced training set (100
samples), the classification is quite good.

Classification with Parzen window method, misclassification is 14.312%

Class 1
Class 2 [

08k

i:] : .
07t b .

0B+ i

W2

05}
oal ¥4 .
03F + + %) .
02t .

0.1+ + B

D 1 1 * 1 1 1 1 1
02 03 03 04 045 05 08 0B 0B 07 075
1

Figure 12: Classification result using Parzen window (acircle with radius of 0.0382),
training set of 100 samples.

b) K-nearest neighbor technique

The agorithm is based on the larger votes for a class in a circle centered at a new
added point that covers K training samples. The reader may want to direct to my
MATLAB codes to see about the algorithm.

For K nearest neighbor technique, similarly to part (a), the first thing is to determine
the number K. According to the suggestion in [7], K is determined as follows:
® 206
(;1008 =6
e

®36
K =round gnB ~=round
e 7}

%]
where n=100 is number of the training samples.
Similarly to part (a) the algorithm assigns a new point to a certain class based on the
votes for that class in a window centered at the new point and containing 6 training
samples.
Figure 13 shows the classification result using 6-nearest neighbor technique. The
misclassification rate is slightly larger than that in part (3).

10

Classification with K-nearest method, the misclassification is 15.441%

1 : : e —hk

: BN WA= :
+ Class 1
*
09¢ * i***-h‘ %t Yoo Class 2 []
+ A +
st o e w
¥ o
07l ;f: k.2 2o |
L #H o
06 s el
yosk o, ¥ * ¥ 1
* .
0.4 ¥ 1
++ g
03F + + % % ** .
02} oty v S |
* ﬁ'*% *

ot - _

1 1 -*- 1y 1 1

D 1 % 1 1 1
025 03 03% 04 045 05 055 0B 0B 07 075
il

Figure 13: Classification with 6- nearest neighbor technique, training set of 100 samples.

c) Nearest neighbor technique

This actually is a specific case of K-nearest neighbor technique where K=1. The
classification is shown in Fig. 14 below.

Classification with nearest neighbor method, misclassification is 17.271%

+ o 4
+ # # Class 1
*
09¢ * i***-h‘ %t Yoo Class 2 []
+ A +
st o Y e
L + +

07k kg e g

i *
L #H +

0.6 et s
yosk o, ¥ * ¥ 1

* ok B
Y S L .
+* "
03F + ++ % £ **]
02} A i’ S |
* *ﬁ'*% *
01t o _
+
1 1 1 1 1

D 1 I* 1 1
025 03 03% 04 045 05 055 0B 0B 07 075
il

Figure 14: Classification using nearest neighbor technique, training set of 100 samples
d) Comparison of threetechniques:

We can see the K-nearest neighbor and Parzel window provide very similar result.
And compared to problem 2, with the small training set (100 samples) these two
techniques perform even better than ANN.

The nearest neighbor gives the poorer result compared to the two above. However it
requires less computation costs.

11

References:
[1] OSU-SVM library for MATLAB, http://svm.sourceforge.net/license.shtml

[2] J. Platt, “Sequential Minimal Optimization: A Fast Algorithm for Training Support
Vector Machines,” Microsoft Research Technical Report MSR-TR-98-14, 1998.

[3] Lin, H-T and C.-JLin, “A study of sigmoid kernels for SVYM and the training of non
PSD kernels by SMO-type methods,” Technical report, Department of Computer Science,
National Taiwan University, 2003.

[4] Chih Wei Hsu, Chih Chung Chang, and Chih Jen Lin, “A practical guide to support
vector classification,” Department of Computer Science, National Taiwan University,
2008.

[5] Duda, Hart, and Stork, “Pattern classification”, 2" edition, John Wiley & Sons, LTD,
2001.

[6] Silverman “Density estimation for statistics and data arelysis,” Chapman &Hall,
London, 1986.

[7] Enas, G. G and Choi, S.C, “Choice of the smoothing parameter and efficiency of k-

nearest neighbor classification,” Computer and Mathematics Application, 12A(2):235-
244,

12

MATLAB codes:

%ECE 662, HW2 Prob 1, the denonstration of the strength of Fisher vs
its
Y%munmer at or
clear all;
clc;
hol d of f;
close all;
mi=[3; 6];
covarl=[5 6;
6 10];
onegal= nmvnrnd(mi, covar1, 1000);
omegal=onegal' ;
m=[17; 13];
omega2= mvnrnd(n2, covar 1, 1000);
onmega2=onega?';

%l ot the data

figure(l);

pl ot (omegal(1,:),onmegal(2,:),"'*b',omega2(1,:),onmega2(2,:)," or");
grid on;

[mturdel sigmal]=me_1(onmegal);
[mturde2 signma2]=me_1(onmega?2);

S w=(1/(2000-2))*(1000*si gnal+1000*si gma2);

%1 sher

w_F=inv(S w)*(mturdel-mturde2);

proj Fl=(w_F' *onegal)./norm(w_F); % projection

proj F2=(w_F' *onega2)./norm w_F);

figure(2);

pl ot (proj _F1, zeros(1, 1000),"' *b', proj _F2, zeros(1, 1000)," " or"'); % Project
the data on the line

ylim([-1,2]);

%o _Fi sher
w_0=m turdel-mturde2;

proj _01=(w_0' *onegal)./norm w_0);

proj _02=(w_0' *onega2)./norm w_0);

figure(3);

pl ot (proj 01, zeros(1, 1000)," " *b", proj _02, zeros(1, 1000),"or"); % Project
the data on the line

ylim([-1,2]);

% ECE 662 HW2

% Cenerate data for problem 2 and problem 3
clear all;

clc;

13

hol d of f;

% the case of 2-D vector

ml=[3; 6];

covar1=[1. 4370 0. 8615
0. 8615 8. 3650] ;

covar l1=covar 1*5

m2=[5; 10] ;
covar 2=[5. 1492 2.3820
2.3820 1.8606];

onmegal= nvnrnd(mlL, covar 1, 10000);

omega2= nvnrnd(n2, covar 2, 10000) ;

trai n=[onegal(1l: 1500,:)' omega2(1:1500,:)'] ;

| abel =[zeros(1, 1500) ones(1, 1500)];

test _set=[onmegal(1501:end,:)"' onega2(1501:end,:)'];
| abel 2=[zer os(1, 8500) ones(1, 8500)];

clear mL n2 covarl covar?2
save data

%r ob 2al

%This shows SVM using |inear kerne
clear all;

clc;

hold of f;

% oad data

| oad dat a;

%uild |inear classifier

[Al phaY, SVs, Bias, Paraneters, nSV, nLabel] = LinearSVC(train_set,
| abel); % This function is from OSU-SVM |i brary

figure(l);

pl ot (test_set(1,1:8500),test_set(2,1:8500), *b",test_set(1,8501:end),te
st_set(2,8501:end), or');

title(' The testing set with the correct |abels');

Xl abel (" x1");

Yl abel (' x2");

| egend(' Class 1','Class 2');

[Cl assRate, DecisionValue, Ns, ConfMatrix, PrelLabels]=
SVMrest (test _set, | abel 2, Al phaY¥Y, SVs, Bias, Paraneters, nSV, nLabel);

%Conpute m sclassification rate
omega_1=[];
omega_2=[] ;
err1=0;
err 2=0;
for i=1:8500
i f(PreLabel s(i))
errl=errl+1;
onega_2=[onega_2 test_set(:,i)];

14

el se
onega_1=[onmega_1 test _set(:,i)];

end
i f (PreLabel s(i+8500))

onega_2=[onmega_2 test_set(:,i+8500)];
el se

err2=err2+1;

onega_l=[onega_1 test_set(:,i+8500)];

end
end
err=((errl+err2)/17000)*100;
figure(2);
pl ot (omega_1(1,:), onmega_1(2,:),' b*" ,omega_2(1,:), onega_2(2,:),'ro");
title(['Classification result with [inear Kernel SVM the
m sclassification is ' num@str(err," " 9%.3f") "%]);
Xl abel (' x1");
Yl abel (' x2");
| egend(' Class 1','Class 2');

%Pr ob 2a2

YECE 662

%SVM usi ng RBF
clear all;

clc;

hol d of f;

| oad data

%scaling data to [0 1]

overal _data=scale_data([train_set test_set],0,1);
trai n_set=overal _data(:, 1:3000);

test _set=overal _data(:, 3001: end);

%train_set=[train_set(:,1:50) train_set(:,2951:end)]; <==this code
will be

% used when training a reduced training set

% | abel =[| abel (:, 1: 50) | abel (:,2951:end)];

% The best optinmum paraneters found by trial and error nethod
%scal l i ng Gamma=50 C=6 are the best paras
%o scalling Gamma=3 C=1 are the best paras

tic;

[Al phaY, SVs, Bias, Paraneters, nSV, nlLabel] = RbfSVC(train_set,
| abel , 50, 6);

toc

tic;

[C assRate, DecisionValue, Ns, ConfMatrix, PrelLabels]=

SVMrest (test _set, | abel 2, Al phaY¥Y, SVs, Bias, Paranmeters, nSV, nLabel);
toc

omega_1=[];

15

omega_2=[];
err1=0;
err2=0;
for i=1:8500
i f(PreLabel s(i))
errl=errl+1,
onmega_2=[onmega_2 test_set(:,i)];
el se
onega_1=[onmega_1 test _set(:,i)];

end
i f(PreLabel s(i+8500))
onega_2=[onmega_2 test_set(:,i+8500)];
el se
err2=err2+1;
onega_1=[onega_1 test_set(:,i+8500)];
end
end

err=((errl+err2)/17000)*100;

figure(3);

pl ot (omega_1(1,:), onmega_1(2,:),' b*' ,onega_2(1,:), omega_2(2,:),'ro");
%title(['Classification result with RBF Kernel SVM no scaling, the
m sclassification is ' numstr(err,"9%.3f') "%]);
title(['Classification result with RBF Kernel SVM scaling, the

m sclassification is ' numstr(err," 9%2.3f") "%]);

Xl abel (" x1");

Yl abel (' x2");

| egend(' Class 1',' Class 2');

%Pr ob2b

%Jsi ng Neural network for classification
% Large training set 3000 sanpl es

clear all;

clc;

hold of f;

close all;

| oad data

%w Il be used in the case of reducing training set
%train_set=[train_set(:,1:50) train_set(:,2951:end)];
% tar get =[ones(1,50) zeros(1,50);zeros(1,50) ones(1,50)];

PR=m nmax(overal | _dat a);

% vectori ze the ouputs

target=[ones(1, 1500) zeros(1, 1500); zeros(1, 1500) ones(1, 1500)];
Y%det erm ne the nunber of hidden units:

net = newff(PR [20 2],{'tansig" 'purelin'});

% training

net.trai nParam epochs = 500;
net.trai nParam goal = 0.01

tic;

net = train(net,train_set,target);
toc

tic;

16

Y = simnet,test_set);
toc
omega_1=[];
onega_2=[];
err1=0;
err2=0;
for i=1:8500
if o (Y(1,i)>=Y(2,i))
onega_1=[onmega_1 test _set(:,i)];
el se
onega_2=[onmega_2 test_set(:,i)];
errl=err1+1;
end

if (Y(1,i+8500)<=Y(2,i+8500))
onega_2=[onmega_2 test_set(:,i+8500)];
el se
onega_l=[onega_1 test_set(:,i+8500)];
err2=err2+1;
end
end

err=(errl+err2)/170;
figure (2);

pl ot (omega_1(1,:), onmega_1(2,:),' b*' ,onega_2(1,:), omega_2(2,:),'ro");
title(['Classification result of the testing set, w thout scaling

m sscl assfication is ' numstr(err,' 9%2.3f") "%]);
%title(['Classification result of the testing set, scaling,

m ssclassfication is ' nunm@str(err,'9%.3f"') "%1]);

x| abel (" x1");

x| abel (" x2");

|l egend(' Class 1',"Class 2');

%rhis function is to scale data to a snmaller range
function scal ed=scal e_data(data, mn_lev, nmax_lev) %wrk for 2 D data

m n_dat a=m n(m n(data));
max_dat a=max(max(data));
di st 1=max_dat a- mi n_dat a;
di st 2=max_| ev-m n_| ev;

scal ed=(((data-m n_data).*dist2)./distl)+m n_| ev;

%his is to compute the snoot hness for Parzel w ndow using Silverman
(1986); this works wel

% or normal -distribution

functi on h=h_conput e(dat a)

mean_dat a=nmean(dat a, 2) ;

mean_dat a=r epmat (nean_dat a, 1, 100) ;
A=dat a- nean_dat a;

B=A*A";

B=B./si ze(dat a, 2);

17

sigma=nean([B(1,1) B(2,2)]);
h=sqrt (sigm)*(size(data, 2)."(-1/6));

%ECE 662

UECE K- near est

%K nearest nei ghbor (part b, probelm 3, HW2)
clear all;

clc;

hol d of f;

close all;

| oad data

%scaling data to increase the speed
train_set=[train_set(:,1:50) train_set(:,2951:end)];
| abel =[zeros(1, 50) ones(1,50)];

overal | _data=scal e_data([train_set test_set],0,1);
trai n_set=overall _data(:,1:100);
test_set=overall _data(:, (end-17000): end);

K=r ound((100)"(3/8)); % choose the nunber K according to Enas and
Choi ce (1986)

omega_1=[];
omega_2=[];
err1=0;
err2=0;
for i=1:17000

arr_tmp=[];

for j=1:100

arr_tnp=[arr_tnmp nornm(test_set(:,i)-train_set(:,j))];

end

[Bidx]=sort(arr_tnp); %dx is the index array sorted by the
val ues of the arr_tnp

votel=0; %ote for class 1;

vot e2=0; %ote for class 2;

for k=1:K

if (~label (idx(k)))
votel=votel+1,

el se
vot e2=vot e2+1;
end
end
i f(i<=8500)

if (votel>=vote2) % correct classification
onega_1=[onmega_1 test_set(:,i)];

el se %wong classification
onega_2=[onmega_2 test_set(:,i)];
errl=errl1+1;

end

el se

if (votel < vote2) %correct classification

onmega_2=[onmega_2 test_set(:,i)];

18

el se %wong classification
onega_1=[onmega_1 test _set(:,i)];
err2=err2+1;
end
end
end

err=(errl+err2)/170;

pl ot (omega_1(1,:), onmega_1(2,:),' b*" ,omega_2(1,:), onega_2(2,:),'ro");

title(['Classification with K-nearest nethod, the msclassification is
nun2str(err,' 9%2.3f") "%]);

Xl abel (' x1");

Yl abel (' x2");

| egend(' Class 1','Class 2');

%ECE 662, part c, problem 3, HW2
%N\ear est Nei ghbor Techni que

clear all;

clc;

hold of f;

close all;

| oad data

%scaling data to increase the speed
train_set=[train_set(:,1:50) train_set(:,2951:end)];
| abel =[zeros(1, 50) ones(1,50)];

overal | data=scal e _data([train_set test_set],0,1);
trai n_set=overall _data(:,1:100);

test _set=overall _data(:, (end-17000): end);

K=1; % near est nei ghbor hood

omega_1=[];
onega_2=[];
err1=0;
err2=0;
for i=1:17000

arr_tmp=[];

for j=1:100

arr_tnp=[arr_tnmp norm(test_set(:,i)-train_set(:,j))];

end

[Bidx]=sort(arr_tnp); % dx is the index array sorted by the
val ues of the arr_tnp

vot e1=0; %ote for class 1;

vot e2=0; %ote for class 2;

for k=1: K

if (~label (idx(k)))
votel=votel+l;

el se
vot e2=vot e2+1;
end
end
i f(i<=8500)

if (votel>=vote2) %correct classification

19

onega_1=[onega_1 test _set(:,i)];
el se %wong classification
onega_2=[onmega_2 test_set(:,i)];
errl=errl+1;
end
el se
if (votel < vote2) %correct classification
onega_2=[onmega_2 test_set(:,i)];
el se %wong classification
onega_l1=[onega_1 test_set(:,i)];
err2=err2+1;
end
end
end

err=(errl+err2)/170;

pl ot (omega_1(1,:), onmega_1(2,:),"'b*" ,omega_2(1,:), onega_2(2,:),'ro");
title(['Classification with nearest nei ghbor nethod, m sclassification
is ' nunstr(err,"%.3f") "%]);

Xl abel (' x1");

Yl abel (' x2");

| egend(' Class 1','Class 2');

%Part a Probelm 3 HW?2
% Parzel w ndow

clear all;

clc;

hol d of f;

close all;

| oad data

%scaling data to increase the speed
train_set=[train_set(:,1:50) train_set(:,2951:end)];
| abel =[zeros(1, 50) ones(1,50)];

overal | _data=scal e_data([train_set test_set],0,1);
trai n_set=overall _data(:,1:100);
test_set=overall _data(:, (end-17000): end);

h=h_compute(train_set); % using Silverman (1986) to conpute the
snoot hness para of the w ndow
% h=h/ 2;
omega_1=[];
onega_2=[];
err1=0;
err 2=0;
for i=1:17000

arr_tmp=[];

for j=1:100

arr_tnp=[arr_tnmp norm(test_set(:,i)-train_set(:,j))];

end

[Bidx]=sort(arr_tnmp); % dx is the index array sorted by the
val ues of the arr_tnp

K=find(B>h,1, first')-1;, % Using a circle with radi an=h as the
Perzen wi ndonw

if (isempty(K) || K==0) % no training sanple in the w ndow, assign
it toclass 1

20

onega_1=[onega_1 test_set(:,i)];
if (i>8500)
err2=err2+1;
end
el se
i dx=i dx(1: K);
vot el=0; %ote for class 1;
vot e2=0; %ote for class 2;
for k=1:K
if (~label (idx(k)))
vot el=votel+l

el se
vot e2=vot e2+1;
end
end
i f(i<=8500)
if (votel>=vote2) % correct classification
onmega_1=[onmega_1 test_set(:,i)];
el se %wong classification
onega_2=[onmega_2 test_set(:,i)];
errl=err1+1;
end
el se
if (votel < vote2) %correct classification
onega_2=[onmega_2 test_set(:,i)];
el se %wong classification
onmega_1=[onmega_1 test _set(:,i)];
err2=err2+1;
end
end

end
end

err=(errl+err2)/170;

pl ot (omega_1(1,:), omega_1(2,:),' b*' ,onega_2(1,:), omega_2(2,:),'ro");
title(['Classification with Parzen wi ndow nmethod, m sclassification is
" nun@str(err,'9R2.3f") "%]);

Xl abel (" x1");

Yl abel (' x2");

| egend(' Class 1','Class 2');

21

