

 1

Problem 1:
 The student mistakenly believed that Fisher criterion ()J w is equivalent to its

numerator ()N w in the determination of the optimum direction w:

i.e., he thought: ()
T

B
T

W

w S w
J w

w S w
= is equivalent to () T

BN w w S w=

 That is not true. In this problem, in part (a) I will first implement an example to show
a case when ()J w is much better than ()N w . Then in part (b), I will theoretically explain
why the student was confused and what is his missing point.

a) Implementation: Let’s consider the case when two classes distribute as in Fig. 1
below.

Figure 1: Two classes: class 1 (blue stars) and class 2 (red circles). Both normally

distribute in 2-D space with the same covariance but different means.

Class 1: mean m1=[3; 6];
Class 2: mean m2=[17; 13];
Both two classes have the same covariance.
covar=[5 6;
 6 10];

Using ()J w as the criterion, we find the optimum direction of Fw :

-6.7963

 3.3072Fw

=

uur

Using ()N w , we find the optimum direction of Nw :

-14.1360

 -7.1310

Nw

=

uuur

 2

The projected data on Fw is shown in Fig. 2 and the projected data on Nw is shown in
Fig.3.

Figure 2: Projected data of the two classes on the line Fw determined by Fisher criterion.

Figure 3: Projected data of the two classes on the line Nw determined by only the

numerator of the Fisher criterion

 Clearly, two projected classes are much better separated on Fw than that on Nw . This
shows that Fisher criterion is much stronger than only its numerator in this case.

b) Explanation: Let’s look at the meaning of the two criteria: Fisher ()J w implies that
two class means are well separated, measured relatively to the sum of the variances of the
data of each class. ()N w , which the student suggested, only guarantees the first term:

Overlapping region

Very well separated

 3

two class means are well separated. Obviously ()N w can’t be as strong as Fisher ()J w
as shown in the example in part (a).
 The reason why the student was confused is that since ()J w is invariant with w (i.e.
we can scale w wα= ∗ , whereα is any scalar number, and the direction of the optimum
scaled w

ur
 is still the same). Therefore, we can scale w such that T

Ww S w in ()J w equals 1

and still get the same direction solution as with Fisher. (i.e now ()J w becomes ()N w).

 The missing point of the student is that he forgot the condition 1T
Ww S w = . In fact, if

he wants to use ()N w and obtains an equivalent solution as Fisher, he will have to solve
the following constrained optimization problem:

maximize () T
BN w w S w=

 Subject to: 1T
Ww S w =

where the constrain condition is important in determination of the direction of w
ur

.
Actually, WS affects not only w but also the direction w

ur
.

Problem 2:

 In this problem, I will implement a Support Vector Machine (SVM) classifier in part
(a) and an Artificial Neural Network (ANN) classifier in part (b). Since both classifiers
are trained on the same training set and tested on the same testing set, we can compare
the classification performance of two techniques. The comparison will be presented in
part (c). I consider the classification performance of a classifier according to its
misclassification rate and its classification speed. In (a) and (b) I will also describe how
to select the parameters for each classifier and the impact of data scaling on their
classification speed.
 The data I generated in this problem is two dimensional so we can much easier to
visualize its distribution, as well as the classification results of two techniques. The data
set is plotted in Fig. 4, where class 1 is a cloud of blue starts and class 2 is that of red
circles. As we can see in the figure, two classes overlap a lot on each other and which
makes linear discrimination techniques fail to classify them. The total sample number in
class 1 is 10,000 and that is the same in class 2. I pick out from each class 1500 samples
to build a training set of 3000 samples. The rest in the overall data set is the testing set
which is plotted in Fig. 5.

 4

Figure 4: The distribution of whole data set on 2-D plane

Figure 5: The distribution of the testing set with correct labels on 2-D plane.

a) Support Vector Machine:

 The core of the SVM algorithm is to solve the dual quadric programming (QP)
optimization problem:

 ()
1 1 1

1
,

2

n n n

D i i j i j i j
i i j

L y y K x xα α α
= = =

= −∑ ∑∑

Subject to
0 i Cα≤ ≤

1

0
n

i i
i

yα
=

=∑

where DL : dual Lagrange form, iα : Lagrange multipliers, :n number of training samples,

,K • • : kernel function, C: regularization parameters, iy : for class 1 it equals -1 and for
class 2 it equals 1.

 5

 We can use the Matlab function quadprog() to solve the problem. However, since the
number of the training set is rather huge (i.e the size of the positive definite matrix in the
QP is very large), it takes very long time for quadprog() to solve this QP. Furthermore,
because Matlab has a limit in the size of QP which it can solve, in this problem I use
OSU-SVM library [1] instead. The library OSU-SVM employs “sequential minimal
optimization” (SMO) algorithm [2] to solve the QP. SMO breaks this large QP problem
into a series of smallest possible QP problems. These small QP problems are solved
analytically, which avoids using a time-consuming numerical QP optimization as an inner
loop. I won’t describe more detail the SMO algorithm since it is beyond the scope of this
homework. What I will concentrate on is what kernel function I choose and how I select
the appropriate parameters for this chosen kernel function.
 Firstly, I try to use a linear kernel to solve the problem. Clearly since two classes
overlap (non- linearly separated), this classifier fails to classify them (Fig. 6).

Figure 6: Classification result when using linear kernel.

 The non- linearity in the relation between the class labels and class attributes suggests
that we should use a non- linear kernel for the SVM algorithm. There are some possible
choices for kernel function in OSU-SVM library: polynomial, radial basis function (RBF),
and sigmoid. I decide to choose RBF for the following reasons:

- It maps samples to a higher dimension which hopefully can handle the overlap
case.

- It can give equal performance to sigmoid with some certain parameters [3].
- It has fewer hyper-parameters than polynomial.
- Finally, it requires less computation than polynomial [4].

The RBF has the form:

()(,) exp x x ; 0i jK xi xj γ γ= − − >

 There are two parameters which I have to determine for the SVM: γ and C . A
general way is to use cross-validation technique to determine these two parameters.
However, in this problem, for the sake of simplicity, I use an alternative way: trial and
error to search for the optimum γ and C. Because these two parameters are independent,

 6

first I fix C and vary γ with various values to find the local optimum value γ which
locally minimizes the misclassification rate. Then I fix that optimum γ while varying C
to find an local optimum C with which the misclassification rate is locally minimum. The
search range of γ is 1 to 100, of C is 1 to 20. Figure 7 shows the classification result
using RBF kernel with the optimum γ =3 and C=1.

Figure 7: The classification result using RBF kernel function, no scaling data

 As we can see in Fig. 7, the classifier does well on the classification performance. The
misclassification is 11.23%.
 Using Matlab function tic and toc before and after training and testing functions,
respectively, I measure the time it takes for these tasks. This shows that the time for
training is 3.62 seconds while for testing is 3.65 seconds.
 To speed up the classifier, a technique is scaling the data to a smaller range. In this
implementation, I scale the data to the range [0 1] and do again the classification
including trial and error to find the optimum parameters. (Note that we need to scale both
training and testing data sets). Figure 8 shows the classification result with scaled data.
The misclassification rate is 11.29% (similar in Fig. 7) while the time for training and
testing reduces significantly to 0.614 and 1.804 seconds, respectively. The optimum
parameters for the RBF in this case are γ =60 and C=5.

 7

Figure 8: Classification result using RBF kernel with scaled data.

b) Artificial Neural Network

 In this part, I will use a feed-forward multi- layer ANN to classify two classes. I use
back-propagation training, adapting with a gradient-descent momentum approach, to train
the ANN. Matlab’s artificial neural network is a strong tool for me to solve this problem.
 The first thing to determine is how many layers in the ANN, how many hidden units,
and what transfer functions we need. Generally, an ANN with 1 hidden layer is sufficient
to solve almost all problems. So I use 1 hidden layer ANN for this classification. In [5],
the author suggests that the hidden unit number should be a number such that the total

weight number in the network is roughly
10
n

 (n is number of training samples). Since we

have two units in the input layer, two units in the output layers, and 3000 samples in the
training set, the number of hidden layers can be computed accordingly as:

3000
1 74

10*4HN = − = , (the bias unit is also taken into account). 74 is a too big number and

it costs a lot of computation and time when the classification is implemented in Matlab. I
again use “trial and error” technique to look for an appropriate HN . I search it in the range
from 5 to 30 and find 20 as the “optimum” number (a compromise between
misclassification rate and computation time). Thus, the structure of the ANN is (2-20-2).
I also choose logsig() as the transfer function for the hidden layer and purelin() for
output layer. (It turned out that the replacement of tansig() for whichever above doesn’t
affect very much the classification rate in this problem).

I also vectorize the class category as: class 1 corresponding with output
1
0

 and class 2

corresponding with output
0
1

.

 Figure 9 shows the classification result using the built ANN. The misclassification is
similar to SVM with RBF in part (a).

 8

Figure 9: Classification result using ANN

c) Comparison between two techniques

 As we see in Fig. 7 and Fig. 9, both techniques give very similar results with the
training set of 3000 samples. (Actually, SVM is a little bit better).
To compare further the performance of two techniques, I reduce the training set to 100
samples while keeping the same testing set of 17000 samples. The following figures
show the classification results of two techniques in the case of the small training set.

Figure 10: Classification using RBF SVM, training set of 100 samples

 9

Figure 11: Classification using ANN, training set of 100 samples.

Figure 10 and Fig. 11 show that RBF SVM performs much better than ANN in this case.
 The classification speed is also an important factor which we should consider. While
we can use tic and toc functions to measure the time the system consumes for training
and testing in SVM algorithm, unfortunately we can’t do so for ANN in MATLAB.
When training a network, we can’t disable a pop-up window which updates the training
progress. The time the system spends on generating and updating this window is
considerable. We can’t measure this time amount until we access the source codes of the
toolbox. This access obviously is not recommended.

Problem 3:

 In this problem, I will implement Parzel window in part (a), K-nearest neighbor in part
(b), and nearest neighbor in part (c), and finally will compare their performance in part
(d). For all techniques I use the reduced training set of 100 samples generated in problem
2. The testing set is the same as that in problem 2. Both training set and testing set are
scaled to the range of [0 1] to reduce the complexity of the computation and thus increase
the classification speed.

a) Parzel window:

 The type and the smoothing parameter of the window are two things I need consider
firstly in this problem. In practice, the most widely used window is the normal form. In
this homework, I choose a circle as a Parzel window and determine the smoothing
parameter according to the suggestion in [6]:

1
6h nσ

 − = ∗

where
2

2

1

1
2 ii

i

sσ
=

= ∑ ; iis are diagonal elements of the sample covariance matrix of the

training set; n: the number of samples in the training set. The computed h is 0.0382.
 The algorithm is based on the larger votes for a class in a circle with h=0.0382,
centered at a new point, to assign this point to that class.

 10

Figure 12 shows the classification using the Parzel window designed above. Note that
both training and testing sets are scaled to [0 1]. With the reduced training set (100
samples), the classification is quite good.

Figure 12: Classification result using Parzen window (a circle with radius of 0.0382),

training set of 100 samples.

b) K-nearest neighbor technique

 The algorithm is based on the larger votes for a class in a circle centered at a new
added point that covers K training samples. The reader may want to direct to my
MATLAB codes to see about the algorithm.

 For K nearest neighbor technique, similarly to part (a), the first thing is to determine
the number K. According to the suggestion in [7], K is determined as follows:

3 3
8 8100 6K round n round

= = =

where n=100 is number of the training samples.
 Similarly to part (a) the algorithm assigns a new point to a certain class based on the
votes for that class in a window centered at the new point and containing 6 training
samples.
 Figure 13 shows the classification result using 6-nearest neighbor technique. The
misclassification rate is slightly larger than that in part (a).

 11

Figure 13: Classification with 6-nearest neighbor technique, training set of 100 samples.

c) Nearest neighbor technique

 This actually is a specific case of K-nearest neighbor technique where K=1. The
classification is shown in Fig. 14 below.

Figure 14: Classification using nearest neighbor technique, training set of 100 samples

d) Comparison of three techniques:

 We can see the K-nearest neighbor and Parzel window provide very similar result.
And compared to problem 2, with the small training set (100 samples) these two
techniques perform even better than ANN.
The nearest neighbor gives the poorer result compared to the two above. However it
requires less computation costs.

 12

References:

[1] OSU-SVM library for MATLAB, http://svm.sourceforge.net/license.shtml

[2] J. Platt, “Sequential Minimal Optimization: A Fast Algorithm for Training Support
Vector Machines,” Microsoft Research Technical Report MSR-TR-98-14, 1998.

[3] Lin, H-T and C.-J Lin, “A study of sigmoid kernels for SVM and the training of non-
PSD kernels by SMO-type methods,” Technical report, Department of Computer Science,
National Taiwan University, 2003.

[4] Chih Wei Hsu, Chih Chung Chang, and Chih Jen Lin, “A practical guide to support
vector classification,” Department of Computer Science, National Taiwan University,
2008.

[5] Duda, Hart, and Stork, “Pattern classification”, 2nd edition, John Wiley & Sons, LTD,
2001.

[6] Silverman, “Density estimation for statistics and data analysis,” Chapman &Hall,
London, 1986.

[7] Enas, G. G and Choi, S.C, “Choice of the smoothing parameter and efficiency of k-
nearest neighbor classification,” Computer and Mathematics Application, 12A(2):235-
244.

 13

MATLAB codes:

%ECE 662, HW2 Prob 1, the demonstration of the strength of Fisher vs
its
%numerator
clear all;
clc;
hold off;
close all;
m1=[3; 6];
covar1=[5 6;
 6 10];
omega1= mvnrnd(m1,covar1,1000);
omega1=omega1';
m2=[17; 13];
omega2= mvnrnd(m2,covar1,1000);
omega2=omega2';

%Plot the data
figure(1);
plot(omega1(1,:),omega1(2,:),'*b',omega2(1,:),omega2(2,:),'or');
grid on;

[m_turde1 sigma1]=mle_1(omega1);
[m_turde2 sigma2]=mle_1(omega2);

S_w=(1/(2000-2))*(1000*sigma1+1000*sigma2);

%Fisher
w_F=inv(S_w)*(m_turde1-m_turde2);
proj_F1=(w_F'*omega1)./norm(w_F); % projection
proj_F2=(w_F'*omega2)./norm(w_F);
figure(2);
plot(proj_F1,zeros(1,1000),'*b',proj_F2,zeros(1,1000),'or'); % Project
the data on the line
ylim([-1,2]);

%no_Fisher
w_0=m_turde1-m_turde2;

proj_01=(w_0'*omega1)./norm(w_0);
proj_02=(w_0'*omega2)./norm(w_0);
figure(3);
plot(proj_01,zeros(1,1000),'*b',proj_02,zeros(1,1000),'or'); % Project
the data on the line
ylim([-1,2]);

 % ECE 662 HW2
% Generate data for problem 2 and problem 3
clear all;
clc;

 14

hold off;
% the case of 2-D vector
m1=[3; 6];
covar1=[1.4370 0.8615
 0.8615 8.3650];
covar1=covar1*5;

m2=[5;10];
covar2=[5.1492 2.3820
 2.3820 1.8606];

omega1= mvnrnd(m1,covar1,10000);
omega2= mvnrnd(m2,covar2,10000);
train=[omega1(1:1500,:)' omega2(1:1500,:)'] ;
label=[zeros(1,1500) ones(1,1500)];
test_set=[omega1(1501:end,:)' omega2(1501:end,:)'];
label2=[zeros(1,8500) ones(1,8500)];

clear m1 m2 covar1 covar2;
save data

%Prob 2a1
%This shows SVM using linear kernel
clear all;
clc;
hold off;
%load data
load data;

%build linear classifier

[AlphaY, SVs, Bias, Parameters, nSV, nLabel] = LinearSVC(train_set,
label); % This function is from OSU-SVM library

figure(1);
plot(test_set(1,1:8500),test_set(2,1:8500),'*b',test_set(1,8501:end),te
st_set(2,8501:end),'or');
title('The testing set with the correct labels');
Xlabel('x1');
Ylabel('x2');
legend('Class 1','Class 2');

[ClassRate, DecisionValue, Ns, ConfMatrix, PreLabels]=
SVMTest(test_set, label2, AlphaY, SVs, Bias,Parameters, nSV, nLabel);

%Compute misclassification rate
omega_1=[];
omega_2=[];
err1=0;
err2=0;
for i=1:8500
 if(PreLabels(i))
 err1=err1+1;
 omega_2=[omega_2 test_set(:,i)];

 15

 else
 omega_1=[omega_1 test_set(:,i)];

 end
 if(PreLabels(i+8500))
 omega_2=[omega_2 test_set(:,i+8500)];
 else
 err2=err2+1;
 omega_1=[omega_1 test_set(:,i+8500)];

 end
end
err=((err1+err2)/17000)*100;
figure(2);
plot(omega_1(1,:), omega_1(2,:),'b*',omega_2(1,:), omega_2(2,:),'ro');
title(['Classification result with linear Kernel SVM, the
misclassification is ' num2str(err,'%2.3f') '%']);
Xlabel('x1');
Ylabel('x2');
legend('Class 1','Class 2');

%Prob 2a2
%ECE 662
%SVM using RBF
clear all;
clc;
hold off;
load data

%scaling data to [0 1]
overal_data=scale_data([train_set test_set],0,1);
train_set=overal_data(:,1:3000);
test_set=overal_data(:,3001:end);

% train_set=[train_set(:,1:50) train_set(:,2951:end)]; <==this code
will be
% used when training a reduced training set
% label=[label(:,1:50) label(:,2951:end)];

% The best optimum parameters found by trial and error method
%scalling Gamma=50 C=6 are the best paras
%no scalling Gamma=3 C=1 are the best paras

tic;
[AlphaY, SVs, Bias, Parameters, nSV, nLabel] = RbfSVC(train_set,
label,50,6);
toc
tic;
[ClassRate, DecisionValue, Ns, ConfMatrix, PreLabels]=
SVMTest(test_set, label2, AlphaY, SVs, Bias,Parameters, nSV, nLabel);
toc
omega_1=[];

 16

omega_2=[];
err1=0;
err2=0;
for i=1:8500
 if(PreLabels(i))
 err1=err1+1;
 omega_2=[omega_2 test_set(:,i)];
 else
 omega_1=[omega_1 test_set(:,i)];

 end
 if(PreLabels(i+8500))
 omega_2=[omega_2 test_set(:,i+8500)];
 else
 err2=err2+1;
 omega_1=[omega_1 test_set(:,i+8500)];
 end
end

err=((err1+err2)/17000)*100;
figure(3);
plot(omega_1(1,:), omega_1(2,:),'b*',omega_2(1,:), omega_2(2,:),'ro');
% title(['Classification result with RBF Kernel SVM, no scaling, the
misclassification is ' num2str(err,'%2.3f') '%']);
title(['Classification result with RBF Kernel SVM, scaling, the
misclassification is ' num2str(err,'%2.3f') '%']);
Xlabel('x1');
Ylabel('x2');
legend('Class 1','Class 2');

%Prob2b
%Using Neural network for classification
% Large training set 3000 samples
clear all;
clc;
hold off;
close all;
load data

% will be used in the case of reducing training set
% train_set=[train_set(:,1:50) train_set(:,2951:end)];
% target=[ones(1,50) zeros(1,50);zeros(1,50) ones(1,50)];

PR=minmax(overall_data);
% vectorize the ouputs
target=[ones(1,1500) zeros(1,1500);zeros(1,1500) ones(1,1500)];
%determine the number of hidden units:
net = newff(PR,[20 2],{'tansig' 'purelin'});
% training
net.trainParam.epochs = 500;
net.trainParam.goal = 0.01;

tic;
net = train(net,train_set,target);
toc

tic;

 17

Y = sim(net,test_set);
toc
omega_1=[];
omega_2=[];
err1=0;
err2=0;
for i=1:8500
 if (Y(1,i)>=Y(2,i))
 omega_1=[omega_1 test_set(:,i)];
 else
 omega_2=[omega_2 test_set(:,i)];
 err1=err1+1;
 end

 if (Y(1,i+8500)<=Y(2,i+8500))
 omega_2=[omega_2 test_set(:,i+8500)];
 else
 omega_1=[omega_1 test_set(:,i+8500)];
 err2=err2+1;
 end
end

err=(err1+err2)/170;
figure (2);

plot(omega_1(1,:), omega_1(2,:),'b*',omega_2(1,:), omega_2(2,:),'ro');
title(['Classification result of the testing set, without scaling
missclassfication is ' num2str(err,'%2.3f') '%']);
% title(['Classification result of the testing set, scaling,
missclassfication is ' num2str(err,'%2.3f') '%']);
xlabel('x1');
xlabel('x2');
legend('Class 1','Class 2');

%This function is to scale data to a smaller range
function scaled=scale_data(data,min_lev, max_lev) %work for 2_D data

min_data=min(min(data));
max_data=max(max(data));
dist1=max_data-min_data;
dist2=max_lev-min_lev;

scaled=(((data-min_data).*dist2)./dist1)+min_lev;

%This is to compute the smoothness for Parzel window using Silverman
(1986); this works well
%for normal-distribution
function h=h_compute(data)

mean_data=mean(data,2);
mean_data=repmat(mean_data,1,100);
A=data-mean_data;
B=A*A';
B=B./size(data,2);

 18

sigma=mean([B(1,1) B(2,2)]);
h=sqrt(sigma)*(size(data,2).^(-1/6));

%ECE 662
%ECE K-nearest
%K nearest neighbor (part b, probelm 3, HW2)
clear all;
clc;
hold off;
close all;
load data

%scaling data to increase the speed
train_set=[train_set(:,1:50) train_set(:,2951:end)];
label=[zeros(1,50) ones(1,50)];
overall_data=scale_data([train_set test_set],0,1);
train_set=overall_data(:,1:100);
test_set=overall_data(:,(end-17000):end);

K=round((100)^(3/8)); % choose the number K according to Enas and
Choice (1986)

omega_1=[];
omega_2=[];
err1=0;
err2=0;
for i=1:17000
 arr_tmp=[];
 for j=1:100
 arr_tmp=[arr_tmp norm(test_set(:,i)-train_set(:,j))];
 end
 [B idx]=sort(arr_tmp); %idx is the index array sorted by the
values of the arr_tmp
 vote1=0; %vote for class 1;
 vote2=0; %vote for class 2;
 for k=1:K
 if (~label(idx(k)))
 vote1=vote1+1;

 else
 vote2=vote2+1;
 end
 end

 if(i<=8500)
 if (vote1>=vote2) % correct classification
 omega_1=[omega_1 test_set(:,i)];
 else %wrong classification
 omega_2=[omega_2 test_set(:,i)];
 err1=err1+1;
 end
 else
 if (vote1 < vote2) % correct classification
 omega_2=[omega_2 test_set(:,i)];

 19

 else %wrong classification
 omega_1=[omega_1 test_set(:,i)];
 err2=err2+1;
 end
 end
end

err=(err1+err2)/170;
plot(omega_1(1,:), omega_1(2,:),'b*',omega_2(1,:), omega_2(2,:),'ro');
title(['Classification with K-nearest method, the misclassification is
' num2str(err,'%2.3f') '%']);
Xlabel('x1');
Ylabel('x2');
legend('Class 1','Class 2');

%ECE 662, part c, problem 3, HW 2
%Nearest Neighbor Technique
clear all;
clc;
hold off;
close all;
load data

%scaling data to increase the speed
train_set=[train_set(:,1:50) train_set(:,2951:end)];
label=[zeros(1,50) ones(1,50)];
overall_data=scale_data([train_set test_set],0,1);
train_set=overall_data(:,1:100);
test_set=overall_data(:,(end-17000):end);

K=1;% nearest neighborhood

omega_1=[];
omega_2=[];
err1=0;
err2=0;
for i=1:17000
 arr_tmp=[];
 for j=1:100
 arr_tmp=[arr_tmp norm(test_set(:,i)-train_set(:,j))];
 end
 [B idx]=sort(arr_tmp); %idx is the index array sorted by the
values of the arr_tmp
 vote1=0; %vote for class 1;
 vote2=0; %vote for class 2;
 for k=1:K
 if (~label(idx(k)))
 vote1=vote1+1;

 else
 vote2=vote2+1;
 end
 end

 if(i<=8500)
 if (vote1>=vote2) % correct classification

 20

 omega_1=[omega_1 test_set(:,i)];
 else %wrong classification
 omega_2=[omega_2 test_set(:,i)];
 err1=err1+1;
 end
 else
 if (vote1 < vote2) % correct classification
 omega_2=[omega_2 test_set(:,i)];
 else %wrong classification
 omega_1=[omega_1 test_set(:,i)];
 err2=err2+1;
 end
 end
end

err=(err1+err2)/170;
plot(omega_1(1,:), omega_1(2,:),'b*',omega_2(1,:), omega_2(2,:),'ro');
title(['Classification with nearest neighbor method, misclassification
is ' num2str(err,'%2.3f') '%']);
Xlabel('x1');
Ylabel('x2');
legend('Class 1','Class 2');

%Part a Probelm 3 HW 2
% Parzel window
clear all;
clc;
hold off;
close all;
load data

%scaling data to increase the speed
train_set=[train_set(:,1:50) train_set(:,2951:end)];
label=[zeros(1,50) ones(1,50)];
overall_data=scale_data([train_set test_set],0,1);
train_set=overall_data(:,1:100);
test_set=overall_data(:,(end-17000):end);

h=h_compute(train_set); % using Silverman (1986) to compute the
smoothness para of the window
% h=h/2;
omega_1=[];
omega_2=[];
err1=0;
err2=0;
for i=1:17000
 arr_tmp=[];
 for j=1:100
 arr_tmp=[arr_tmp norm(test_set(:,i)-train_set(:,j))];
 end
 [B idx]=sort(arr_tmp); %idx is the index array sorted by the
values of the arr_tmp
 K=find(B>h,1,'first')-1; % Using a circle with radian=h as the
Perzen windonw
 if (isempty(K) || K==0) % no training sample in the window, assign
it to class 1

 21

 omega_1=[omega_1 test_set(:,i)];
 if (i>8500)
 err2=err2+1;
 end
 else
 idx=idx(1:K);
 vote1=0; %vote for class 1;
 vote2=0; %vote for class 2;
 for k=1:K
 if (~label(idx(k)))
 vote1=vote1+1;
 else
 vote2=vote2+1;
 end
 end

 if(i<=8500)
 if (vote1>=vote2) % correct classification
 omega_1=[omega_1 test_set(:,i)];
 else %wrong classification
 omega_2=[omega_2 test_set(:,i)];
 err1=err1+1;
 end
 else
 if (vote1 < vote2) % correct classification
 omega_2=[omega_2 test_set(:,i)];
 else %wrong classification
 omega_1=[omega_1 test_set(:,i)];
 err2=err2+1;
 end
 end
 end
end

err=(err1+err2)/170;
plot(omega_1(1,:), omega_1(2,:),'b*',omega_2(1,:), omega_2(2,:),'ro');
title(['Classification with Parzen window method, misclassification is
' num2str(err,'%2.3f') '%']);
Xlabel('x1');
Ylabel('x2');
legend('Class 1','Class 2');

