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History

Bayes’ Theorem takes its name from the mathematician Thomas Bayes. For an accurate
and detailed information about him, you might want to read his biography by Prof. D.R.
Bellhouse [1].

Note

This tutorial assumes familiarity with the following–

• The axioms of probability

• Definition of conditional probability

Bayes’ Theorem

Let us revisit conditional probability through an example and then gradually move onto
Bayes’ theorem.

Example

Problem: In Spring 2014, in the Computer Science (CS) Department of Purdue Univer-
sity, 200 students registered for the course CS180 (Problem Solving and Object Oriented
Programming). 30% of the registered students are CS majors and the rest are non-majors.
From the student registration data we observe that 80% of the CS majors are males, where
as only 40% of non-majors are males. Find the following:

1. The probability that a randomly selected student is a CS major.

2. The probability that the selected student is a CS major and a male.
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3. The probability that the selected student is a male.

4. Given that the selected student is a male what is the probability that he is a CS major?
How is this different from the probability computed in part 1.

Solution:

• Notation: Let CS be the event that the selected student is a computer science major
and let M be the event that the selected student is a male. Therefore, we can define
the following events: CS ≡ CS major, CS ≡ non-major, M ≡ male and M ≡ female.
We can summarize the information given problem in the form of a table [2] or in the
form of a probability tree.

Total No. of Male No. of Female

No. of CS majors 0.3× 200 = 60 0.8× 60 = 48 0.2× 60 = 12
No. of non majors 0.7× 200 = 140 0.4× 140 = 56 0.6× 140 = 84

Total 200 104 96

The elements of the table excluding the legends (or captions) can be considered as a 3 × 3
matrix. Let (1,1) represent the first cell of the matrix. The content of (1,1) is computed
first, followed by content of (1,2) and then (1,3). The same is then done with the second
and third rows of the matrix.

Figure 1: Probability tree

The probability tree in Figure 1 is drawn by considering events as sequential. The number
of branches in the probability tree depends on the number of events (i.e., how much you know
about the experiment). The numbers on the branches denote the conditional probabilities.
Note that P(CS ∩M) and P(CS ·M) are equivalent representations.
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1. From the table, P(CS) = No. of CS majors
Total no. of Students

= 60
200

= 0.3.

This is nothing but the fraction of the total students who are CS majors.

2. From the table, P(CS ∩M) = No. of CS majors who are also males
Total no. of Students

= 48
200

= 0.24.

Using the probability tree we can interpret (CS ∩M) as the occurrence of event CS
followed by the occurrence of event M . Therefore,
P(CS ∩M) = P(CS)×P(M |CS) = 0.3× 0.8 = 0.24 (multiplication rule)

3. From the table, P(M) = Total no. males
Total no. of Students

= 104
200

= 0.52

From the probability tree it is clear that the event M can occur in 2 ways. Therefore
we get,
P(M) = P(M |CS)×P(CS)+P(M |CS)×P(CS) = 0.8×0.3+0.4×0.7 = 0.52 (total
probability theorem)

4. From the table, P(CS|M) = No. of males who are CS majors
Total no. of males

= 48
104

= 0.4615

Now let us compute the same using the probability tree. If you carefully observe
the tree it is evident that the computation is not direct. So let us start from the
definition of conditional probability, i.e.,

P(CS|M) =
P(CS ∩M)

P(M)

Expanding the numerator using multiplication rule,

P(CS|M) =
P(M |CS)×P(CS)

P(M)

Using total probability theorem in the denominator,

P(CS|M) =
P(M |CS)×P(CS)

P(M |CS)×P(CS) + P(M |CS)×P(CS)
(1)

=
0.8× 0.3

0.8× 0.3 + 0.7× 0.4
= 0.4615

• Observation: From part 4. and part 1. we observe that P(CS|M) > P(CS), i.e.,
0.4615 > 0.3.
What does this mean? How did the probability that a randomly selected student being
a CS major change, when you were informed that the student is a male? Why did it
increase?
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• Explanation: In part 1. of the problem we only knew the percentage of males and
females in the course. So, we computed the probability using just that information. In
computing this probability the sample space was the total number of students in the
course.

In part 4. of the problem we were informed that event M has occurred, i.e., we got
partial information. What did we do with this information? We used it and revised the
probability, i.e., our prior belief, in this case P(CS). P(CS) is called the prior because
that is what we knew about the outcome before being informed about the occurrence
of event M . We revised the probability (prior) by changing the sample space from the
total number of students to the total number of males in the course. The increase in
the prior is justified by the fact that there are more males who are CS majors than
females.

• Inference: So, what do we learn from this example?

1. We are supposed to revise our beliefs when we get information. Doing this will
help us predict the outcome more accurately.

2. In this example we computed probabilities using two different methods: con-
structing a table and, by constructing a probability tree. In practice one could
use either of the methods to solve a problem.

Equation (1) is called Bayes’ theorem and can be generalized as,

P(Ai|B) =
P(B|Ai)×P(Ai)∑n
j=1 P(B|Aj)×P(Aj)

(2)

where, n is the number of events (cardinality of the set {Ai}) in the sample space and,
i = 1, 2, ..., n. Note that the events Ai should be mutually exclusive and exhaustive as shown
in the Figure. 2. In Figure. 2 the green colored region corresponds to event B.

Bayes’ theorem can be understood better by visualizing the events as sequential as de-
picted in the probability tree. When additional information is obtained about a subsequent
event; it is used to revise the probability of the initial event. The revised probability is called
posterior. In other words, we initially have a cause-effect model where we want to predict
whether event B will occur or not, given that event Ai has occurred.

Ai
cause−effect−−−−−−−−→

P(B|Ai)
B

We then move to the inference model where we are told that event B has occurred and our
goal is to infer whether event Ai has occurred or not [3].

Ai
inference←−−−−−
P(Ai|B)

B
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Figure 2: Venn diagram

In summary, Bayes’ Theorem [4] provides us a simple technique to turn information about
the probability of different effects (outcomes) from each possible cause, into information
about the probable cause given the effect (outcome).

Bayes’ Classifier

Bayes’ Classifier uses Bayes’ theorem to classify objects into different categories. This tech-
nique is widely used in the area of pattern recognition and machine learning. Let us describe
the setting for a classification problem and then briefly outline the procedure.

Problem Setting: Consider a collection of N objects each with a d dimensional feature
vector X. Let Xk be the feature vector of the kth object. Feature vector can be thought
of as a d-tuple describing the object. The task is to classify the objects into one of the C
categories (classes).

Solution Approach: Given an object k with feature vector Xk choose a class wi such
that,

P(wi|Xk) ≥ P(wj|Xk),∀j = 1, 2, .., C (3)

Using, Bayes’ theorem this can be re-written as,

P(Xk|wi)×P(wi)∑C
i=1 P(Xk|wi)×P(wi)

≥ P(Xk|wj)×P(wj)∑C
j=1 P(Xk|wj)×P(wj)

Since the denominators are the same, we get

P(Xk|wi)×P(wi) ≥ P(Xk|wj)×P(wj) (4)

Equation (4) is called Bayes’ Rule, where P(Xk|wi) and P(wi) are called the likelihood
and prior respectively [5]. Equation (4), i.e., Bayes’ rule is used in the classification problem
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instead of Equation (3) because in most real situations it is easier to estimate the likelihood
and prior.
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