ECE 301: Homework 3

Due: 7/7/15

Warm-Up Problems

Problem 1

Consider two periodic signals, $x_{1}(t)$ and $x_{2}(t)$. Signal $x_{1}(t)$ has period 2 and Fourier Series coefficients $a_{1}=a_{-1}=2$ and all other $a_{k}=0$. Signal $x_{2}(t)$ has period 3 and Fourier Series coefficients $a_{1}=j$, $a_{-1}=-j$ and all other $a_{k}=1$.

Part a:

Plot $x_{1}(t)$ and $x_{2}(t)$.

Part b:
Let $y(t)=x_{1}(t)+x_{2}(t)$. Find the Fourier Series coefficients of $y(t)$.

Problem 2

Given the Fourier Series coefficients of a continuous-time signal that is periodic with period 4, find the signal, $x(t)$.

Part a:
$a_{k}=\delta[k-3]+\delta[k+3]$
Part b:
$a_{k}=e^{-2|k|}$

MATLAB Portion

Introduction

This section is intended to familiarize you with fourier series. Please review the analysis and synthesis equations for the Continuous-Time Fourier Series (CTFS) before starting. All files necessary are included in the waveforms.zip file.

1 Square Wave

Download square_wave.mat and load it in Matlab (load square_wave.mat). It will contain a vector continaing the time, t , a vector with the square waveform, x , and a variable with the period, T .

1.1 Fourier Series Coefficients

Find the formula for the Fourier Series (CTFS) Coefficients, a_{k}. Next, find an expression for b_{k} such that:

$$
\begin{equation*}
x(t)=b_{0}+\sum_{k=1}^{\infty} b_{k} \cos \left(\frac{2 \pi}{T} k t\right) \tag{1}
\end{equation*}
$$

Let $\tilde{x}(t)$ be an approximation to $x(t)$ that has only the first few harmonics.

$$
\begin{equation*}
\tilde{x}(t)=b_{0}+\sum_{k=1}^{N} b_{k} \cos \left(\frac{2 \pi}{T} k t\right) \tag{2}
\end{equation*}
$$

1.2 Deliverables

For the first 8 harmonics (not including b_{0} and therefore there are 6 total graphs), plot $x(t)$ and $\tilde{x}(t)$ in the same figure ($\mathrm{plot}(\mathrm{t}, \mathrm{x}, \mathrm{t}, \mathrm{x}$ _tilde)).

Make a single plot of $\tilde{x}(t)$ for $N=100$ (first 100 harmonics) with $x(t)$ in the same axes as before. Note what happens as the number of harmonics is large.

1.3 Checklist

- Expression for a_{k}.
- Expression for b_{k}.
- Plots of first five harmonics.
- Plot using first 100 harmonics.

2 Saw-tooth

Download saw_tooth.mat and load it in Matlab (load saw_tooth.mat). It will contain a vector continaing the time, t , a vector with the square waveform, x , and a variable with the period, T .

2.1 Fourier Series Coefficients

Find the formula for the Fourier Series (CTFS) Coefficients, a_{k}. Next, find an expression for b_{k} such that:

$$
\begin{equation*}
x(t)=b_{0}+\sum_{k=1}^{\infty} b_{k} \sin \left(\frac{2 \pi}{T} k t\right) \tag{3}
\end{equation*}
$$

Let $\tilde{x}(t)$ be an approximation to $x(t)$ that has only the first few harmonics.

$$
\begin{equation*}
\tilde{x}(t)=b_{0}+\sum_{k=1}^{N} b_{k} \cos \left(\frac{2 \pi}{T} k t\right) \tag{4}
\end{equation*}
$$

2.2 Deliverables

For the first 8 harmonics (8 total graphs), plot $x(t)$ and $\tilde{x}(t)$ in the same figure ($\mathrm{plot}\left(\mathrm{t}, \mathrm{x}, \mathrm{t}, \mathrm{x} _\mathrm{tilde}\right.$)).
Make a single plot of $\tilde{x}(t)$ for $N=100$ (first 100 harmonics) with $x(t)$ in the same axes as before. Note what happens as the number of harmonics is large.

2.3 Checklist

- Expression for a_{k}.
- Expression for b_{k}.
- Plots of first eight harmonics.
- Plot using first 100 harmonics.

3 Report and Code

For the MATLAB section, please attach a typed-up report with all explicit deliverables, explanations you deem necessary, and your code at the end.

