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Part I: A General Framework for Solutions to Q1 – Q3 
 
 Basically, Q1 – Q3 are problems of investigating the performance of different 
techniques using synthetic datasets. In this part, I propose a general frame work for 
solving such problems. The results and conclusions for Q1-Q3 will be presented in Part II 
– Part IV and the matlab code is in Part V. Further, Minitab 14 is used for Design of 
Experiment (DOE) Analysis. 
 
 As aforementioned, our objective is to investigate the performance of different 
techniques. To be specific, we want to evaluate the performance of different methods 
(effects on classification error rate). Besides a restrained conclusion of which method is 
better on the specific datasets under investigation, we may interested in asking questions 
like: 
1) Do the datasets used represent a comprehensive set of scenarios? 
1) Is it possible to quantify the effects of different methods? 
2) The conclusion is valid with what level of (statistical) confidence? 
 

For this purpose, I propose to use the method of Design of Experiment (DOE) in 
finding answers to the above. To generate a set of datasets which represent possible 
scenarios comprehensively, we can specify a list of factors which are important 
characteristics of datasets and then use DOE to generate a design which specify the 
setting of datasets. For simplicity, I only consider 2 level factorial designs in this report. 
Table 1 list the factors and the corresponding levels considered in experiment. 
  
Factors Sample-to-

variable ratio 
Within-to-
between 
scatter 

Balance/Non-
balanced class 

Methods under 
investigation 

Formula 
iablesinput

samples
var#

#  
21

21

ΣΣ

− µµ
 2#

1#
classinsamples
classinsamples  

Low level 10 0.5 1 
High level 100 1 4 

The methods 
under 
investigation 

*: For simplicity, we assume that 2Rx∈ ; there are two classes }1,1{−∈y  and each class is normal with 
the corresponding mean iµ and covariance matrix iΣ , 2,1=i .We further assume that si 'Σ  are diagonal, 
i.e. there are no correlation between individual x variables. 

 
There are three factors each with 2 level, i.e. 823 =  different settings. For each of 

the K methods under investigation, we generate L replicates for each of the 8 settings and 
collect the classification accuracy generated - KLLK 8*8* = runs in total. Finally, we 
will construct a DOE model on classification accuracy. The DOE model will then 
quantify the effects of factors in determining the accuracy. The P values associated with 
each model coefficients represent the corresponding statistical confidence. 
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Part II – Solution to Q1 
 
 Below is a list of factors under investigation 
Factors S-V ratio W-B scatter n1-n2 Methods under 

investigation 
Formula 

iablesinput
samples

var#
#  

21

21

ΣΣ

− µµ
 2#

1#
classinsamples
classinsamples  

Fisher or the 
2nd method 

Low level 10 0.5 1 -1 (Fisher) 
High level 100 1 4 1 (2nd method) 
 
 For this design, we first generate 3 replicates for each setting – 8*2*3=48 runs in 
total. We run Fisher ‘s method and the 2nd method in Q1 on each of the 48 datasets, 
record the training and testing percentage error obtained and then do factorial fit on the 
error rate with respect to the factors in the design. Below is the  DOE model obtained on 
fitting training error:  

 
 
Interpretation of DOE results: 

1) With 99% confidence we conclude that the effect of “Fisher/M” is significant – in 
other words, there is significant difference in training error between the method of 
fisher discriminant analysis and the 2nd method; further more, when all other 
factors are the same, the training error produced by fisher discriminant is on 
average 3.56% smaller than that of the 2nd method. 
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2) Further, we also have enough confidence (>95%) to conclude that: a) the factor of 
with-to-between scatter is very important. Specifically, when the ratio increases 
from 0.5 to 1, training error decreases by 12.102% on average and when the s-v 
ratio is on high-level, there will be another 2.785% decrease in training error. 

 
Model on testing error 

 
Interpretation: 
1) Lack of Fit test indicates no evidence for model failure; 
2)  The model shows a general trend of an increased error rate of 1.438% by 

switching from Fisher’s method to the 2nd method. However, P value shows that 
there is not enough evidence to support the above statement. 

 
Recommendation: 
To further investigate whether the factor of Fisher/M is significant in fitting testing 
error rate, we need to  
1) add more replicates to the design for a better estimate of the standard deviation of 

coefficients, or 
2) re-design the setting of datasets, e.g. consider other characteristics of datasets or 

choose other levels of factors in the design.  
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Part III – Solution to Q2 
Below is a list of factors under investigation 
Factors S-V ratio W-B 

scatter 
n1-n2 Methods under 

investigation 
Formula 

iablesinput
samples

var#
#  

21

21

ΣΣ

− µµ
 2#

1#
classinsamples
classinsamples  

Neural Network 
(NN) or  
SVM  method 

Low level 10 0.5 1 -1 (NN) 
High level 100 1 4 1 (SVM) 
 
 For this design, we first generate 6 replicates for each setting – 8*2*6=96 runs in 
total. We run Fisher ‘s method and the 2nd method in Q1 on each of the 48 datasets, 
record the training and testing percentage error obtained and then do factorial fit on the 
error rate with respect to the factors in the design. Below is the DOE model obtained on 
fitting training error:  

 
 
Interpretation: 
1) With large confidence (P=0.000) we conclude that when all other factors being 

equal, SVM on average, has a training error that is 3.079% higher than NN. 
2) When sample-to-variable ratio is low (size of training set is small), SVM has 

training error 2.462% lower than NN (at 98% confidence level); 
3) When within-to-between scatter is low (classes are close/overlapping), SVM has 

training error 2.579% lower than NN.  
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Part IV – Solution to Q3 
Note that training error for nearest neighbor is zero by definition. We will focus 

only on comparing testing error rate for this set of methods. Further, we choose K=3 
for K nearest neighbor method. 
 
 Since the design was setup in a 2 level factorial fashion, we need to do pairwise 
comparison between the three methods. Below are the DOE models for factorial fit on 
testing error. 
1) Nearest Neighbor (NN)  v.s. Parzen window 

 
 
Interpretation:   
         The model shows a general trend of decreased testing error rate by 2.042% by 

switching from Nearest Neighbor to Parzen window. However, we only have 
74.6% confidence level for the above statement.  
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2) Nearest Neighbor (NN) v.s. K Nearest Neighbor (KNN) 

 
Interpretation: 
           The model shows a general trend of decreased testing error of 2.021% by 

switching from NN to KNN. However, again, we only have 71.7% confidence 
level for the statement. 
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3) KNN v.s. Parzen 

 
 
Interpretation: 
       Model shows the effect of factor “KNN/Parzen” is very small (0.021), and the 

associated p value is very large (98.9%). It is implied that at there is not much 
difference between the Parzen window method and the KNN.  

 
Conclusion:  
  Basing on the experimental results, DOE analysis identified a statistical pattern 
of decreased accuracy of about 2% when switching from the method of NN to Parzen 
Window or KNN (with roughly 70% confidence level) and there is no significant 
difference between KNN and Parzen window in terms of classification error rate 
obtained.  
 
Recommendation for further investigation: 
      DOE model identifies a general trend of decreased/increased error rate between 
methods by the sign of the effects. However, for many cases, there is not enough 
statistical evidence to support the statement. To further investigate, need to redesign 
the setting of datasets or to add more runs for a better estimate of the standard 
deviation of coefficients. 
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Part V -  Matlab Code 
Reference: 

1) The toolbox of “SVMlight” is used to implement linear SVM classifier; 
More information about SVMlight can be found at 
http://www.cs.cornell.edu/people/tj/svm_light/ 

 
2) The toolbox of  “Netlab’ is used to implement the forword Neural Network 

More information about “Netlab” can be found at 
http://www.ncrg.aston.ac.uk/netlab/ 

 
 
 

1. M file for generating data 
clc 
clear 
close all 
%dataset setting 
 
% % 1 ABC-(++-) 
% xr1=100;xr2=100; % # of samples for each cluster 
% mu1 = [2,1];mu2=[4,3.83];sigma1=[4,0;0,1];sigma2=[2,0;0,1.5]; 
 
% % 1 ABC-(+++) 
% xr1=40;xr2=160; % # of samples for each cluster 
% mu1 = [2,1];mu2=[4,3.83];sigma1=[4,0;0,1];sigma2=[2,0;0,1.5]; 
 
% % 1 ABC-(+--) 
% xr1=100;xr2=100; % # of samples for each cluster 
% mu1 = [2,1];mu2=[3,2.414];sigma1=[4,0;0,1];sigma2=[2,0;0,1.5]; 
 
% % 1 ABC-(+-+) 
% xr1=40;xr2=160; % # of samples for each cluster 
% mu1 = [2,1];mu2=[3,2.414];sigma1=[4,0;0,1];sigma2=[2,0;0,1.5]; 
 
% % 1 ABC-(-+-) 
% xr1=10;xr2=10; % # of samples for each cluster 
% mu1 = [2,1];mu2=[4,3.83];sigma1=[4,0;0,1];sigma2=[2,0;0,1.5]; 
 
% % % 1 ABC-(-++) 
% xr1=4;xr2=16; % # of samples for each cluster 
% mu1 = [2,1];mu2=[4,3.83];sigma1=[4,0;0,1];sigma2=[2,0;0,1.5]; 
 
% % 1 ABC-(---) 
% xr1=10;xr2=10; % # of samples for each cluster 
% mu1 = [2,1];mu2=[3,2.414];sigma1=[4,0;0,1];sigma2=[2,0;0,1.5]; 
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% % 1 ABC-(--+) 
xr1=4;xr2=16; % # of samples for each cluster 
mu1 = [2,1];mu2=[3,2.414];sigma1=[4,0;0,1];sigma2=[2,0;0,1.5]; 
 
X1 = mvnrnd(mu1,sigma1,xr1);%generate samples of X using the 1st Gaussian 
X2 = mvnrnd(mu2,sigma2,xr2);%generate samples of X using the 2nd Gaussian 
X=[X1',X2']'; 
Y1=zeros(xr1,1);Y2=ones(xr2,1);;  
Y=[Y1',Y2']'; 
 
figure,hold on; 
plot(X1(:,1),X1(:,2),'r.'); 
plot(X2(:,1),X2(:,2),'b*'); 
hold off 
 
% xr1=40;xr2=160; % # of samples for each cluster 
% mu1 = [2,1];mu2=[5,5.243];sigma1=[4,0;0,1];sigma2=[2,0;0,1.5]; 
 
2. m file for implementing classifiers 
clear 
clc 
close all 
 
load GDOE_ABC_--+_6 
trset=X;trlabel=Y+1; 
load GDOE_ABC_--+_1  
 
tst_set=X;tst_label=Y+1; 
 
%fisher linear 
trn.X=trset';trn.y=trlabel'; 
tst.X=tst_set';tst.y=tst_label'; 
model = fld(trn); 
ypred = linclass(trn.X,model); 
tr_error=cerror(ypred,trn.y); 
ypred = linclass(tst.X,model); 
tst_error=cerror(ypred,tst.y); 
[tr_error,tst_error] 
 
%2nd method 
A1=find(trlabel==1);A2=find(trlabel==2); 
mu1=mean(X(A1,:));mu2=mean(X(A2,:)); 
 
w=(mu1-mu2)/sqrt((mu1-mu2)*(mu1-mu2)'); 
T=X*w';T_tst=tst_set*w'; 
trn.X=T';trn.y=trlabel'; 
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tst.X=T_tst';tst.y=tst_label'; 
model = fld(trn); 
ypred = linclass(trn.X,model); 
tr_error=cerror(ypred,trn.y); 
ypred = linclass(tst.X,model); 
tst_error=cerror(ypred,tst.y); 
[tr_error,tst_error] 
 
%Backpropagation Neural Network 
net = mlp(2, 3, 1, 'linear'); 
[xr,xc]=size(trset); 
Set up vector of options for the optimiser. 
options = zeros(1,18); 
options(1) = 0;   %This provides display of error values. 
options(9) = 0;   %Check the gradient calculations. 
options(14) = 100;  %Number of training cycles.  
 
[net, options] = netopt(net, options, trset, trlabel, 'scg'); 
pred = mlpfwd(net, trset); 
ypred=1*(pred<=1.5)+2*(pred>1.5); 
tr_error=cerror(ypred,trn.y); 
pred = mlpfwd(net, tst_set); 
ypred=1*(pred<=1.5)+2*(pred>1.5); 
tst_error=cerror(ypred,tst.y); 
[tr_error,tst_error] 
 
%Linear SVM 
C=10; 
Y_learn=2*(trlabel==2)-1; 
net_1stage=svml(['model_1stage.txt'], 'Verbosity', 0, 
 'Kernel',0,'KernelParam',[1 1 1],'C',C,'ComputeLOO',0); 
[net_1stage, results]=svmltrain(net_1stage,trset,Y_learn); 
out1=(svmlfwd(net_1stage,trset)); 
ypred=(out1>0)+1; 
tr_error=cerror(ypred,trlabel); 
out1=(svmlfwd(net_1stage,tst_set)); 
ypred=(out1>0)+1; 
tst_error=cerror(ypred,tst_label); 
[tr_error,tst_error] 
 
%KNN K=3 
model=knnrule(trn,3); 
ypred=knnclass(trn.X,model); 
tr_error=cerror(ypred,trn.y); 
ypred=knnclass(tst.X,model); 
tst_error=cerror(ypred,tst.y); 
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[tr_error,tst_error] 
 
%KNN K=1 
valY=[1,2]'; 
[ypred_tr,tabkppv,distance]=knn(trset,trlabel,valY,trset,1); 
tr_error=cerror(ypred_tr,trn.y); 
[ypred,tabkppv,distance]=knn(trset,trlabel,valY,tst_set,1); 
tst_error=cerror(ypred,tst.y); 
[tr_error,tst_error] 
 
%Parzen Window 
[xr,xc]=size(trset); 
[xtr,xtc]=size(tst_set); 
    
A1=find(trlabel==1);A2=find(trlabel==2); 
for i=1:xr 
    f_tr(i,1)= ksdensity(trset(A1,:),trset(i,:)); 
    f_tr(i,2)= ksdensity(trset(A2,:),trset(i,:)); 
end 
[T,ypred]=max(f_tr');ypred=ypred'; 
tr_error=cerror(ypred,trlabel); 
for i=1:xtr 
    f_tst(i,1)= ksdensity(trset(A1,:),tst_set(i,:)); 
    f_tst(i,2)= ksdensity(trset(A2,:),tst_set(i,:)); 
end 
[T,ypred]=max(f_tst');ypred=ypred'; 
tst_error=cerror(ypred,tst_label); 
[tr_error,tst_error] 
 
 
 
 
 


