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1 Introduction

This slecture discusses how to whiten data that is normally distributed. Data whitening is required
prior to many data processing techniques such as principal component analysis, independent com-
ponent analysis, etc. The slecture also covers how to transform white data so that it resembles data
drawn from some Gaussian distribution with known mean and covariance. This will be useful mate-
rial for when the reader would like to generate data points from non-white Gaussian distributions.

Throughout this slecture, we will denote the probability density function (pdf) of the random
variable X as fx : R? - R where X € R? is a d-dimensional Gaussian random vector with mean p
and covariance matrix 3. This slecture assumes that the reader is familiar with topics from linear
algebra including but not limited to vector spaces, eigenvalues, and eigenvectors. It is no surprise
that eigendecomposition plays an important role in data whitening since we would ultimately like to
produce a diagonal covariance matrix.

The pdf of X is given by

2 Whitening Transform

Let X be a multivariate Gaussian random vector with arbitrary covariance matrix 3 and mean vector
. We would like to transform it to another random vector whose covariance is the identity matrix.
This means that the components of our new random variable are uncorrelated and have variance 1.
This process is called whitening because the output resembles a white noise vector.

There are two steps to the procedure. First, we must decorrelate the components of the vector.
This produces a data point drawn from a distribution with a diagonal covariance matrix. Finally, we
must scale the different components so that they have unit variance. In order to do this, we need the
eigendecomposition of the original covariance matrix 3. This is either known or it can be estimated
from your data set. We assume that X is positive definite. We also assume wlog that X has zero
mean. If not, then subtract the mean (estimated or otherwise) from your samples such that
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The covariance matrix can be expressed as follows

> = PAD L = PAZAD ! (4)

where A is a diagonal matrix with the eigenvalues, \;, of 3 on the diagonal and ® is the matrix of
corresponding eigenvectors, e;. In addition, the columns of ® are orthonormal so that

o =7 (5)

Let



Y =&'X (6)

Then Y is a random vector with a decorrelated multivariates Gaussian distribution with variances
A; on the diagonal of its covariance matrix. The next step then is quite obvious. Let

W=A":Y=A":8"X (7)

W is then random vector with the standard multivariate distribution. Note that X =x, Y =y,
and W = w are at the same Mahalanobis distance away from their respective means (in this case,
the origin) and in the case of W, the Mahalanobis distance and the Euclidean distance are the same.

Now that you have the procedure, you may be asking why this transform works. Well, we can
derive the covariance matrix of Y. Recall that its mean is the zero vector so its covariance is
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This proves what we previously stated; the components of Y are uncorrelated since the covariance

matrix is diagonal. In the Gaussian case, this is equivalent to independence since we can express the
joint pdf of the components of Y as a product of the marginals.
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Using the fact that diagonal matrix A3 is symmetric, the covariance matrix of W is
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This concludes the proof of how the linear transform given by matrix pre-multiplication by AT
produces whitened data.



Let us now work through an example. For the purpose of illustration, I will use a bivariate
Gaussian vector X ~ N(0,3) where

10 —6
s-[n ]
Let S be the collection of data points obtained by taking n samples from X. The columns of S

are random vectors X;, ¢ = 1,2,...,n. S can be generated in MATLAB using the following code.

% Generate n samples from colored bivariate Gaussian

n = 200;

CovX = [10 —6;—6 51;
mu = [0 0];

S = mvnrnd (mu, CovX,n);
S =3';

Figure 1: Scatter plots and Contours. All contours are at Mahalanobis distance 1. (a) Original
colored density of X, (b) decorrelated density of Y, (¢) whitenend density of W.

Figure 1(a) shows a scatter plot of the generated samples along with one contour at unit Ma-
halanobis distance. The contour is an ellipse that is centered at the origin and rotated through an
angle. Say that we do not know the parameters of the distribution from which S was obtained so we
estimate them.

9.9559 —5.8718
—5.8718 4.8099

The code for the above estimation is given by

)

% estimate sample mean
mus = mean (S, 2);
°

% estimate covariance
Covs = bsxfun (@minus, S,mus) * bsxfun (@minus, S,mus) '/ (n—1);



Next, we find the eigenvectors of the estimated covariance matrix by finding the orthonormal
basis for the nullspace of matrix 3 — A\;I. In MATLAB, we simply use the eig command to find both
® and A.

[Phi,Lam] = eig(Covs);

~10.9881 0 P —0.5576 —0.8301

A 0 13.8774 —0.8301 0.5576

Now let
Y = ®S 9)

Y = Phi.'S;

Then, Y is a set of n data points drawn from an uncorrelated bivariate Gaussian distribution with
diagonal covariance matrix A. The premultiplication by ® essentially rotates the ellipse in figure
1(a) so that its principal axes are aligned with the x1 — 29 axes. The result of this transformation is
shown in figure 1(b).

Finally, we scale the samples so the radii of the ellipse are of unit length.

W=A2Y (10)

In MATLAB,
W = sgrt(Lam)\ Y;
The whitened data is shown in figure 1(c). Note that the normalization produces a contour that
is now a circle. From MATLAB, the estimated covariance of the whitened samples is given by

s _ [ 1.0005 ~0.0001
W =1 -0.0001 1.0000

Note that the whitening transform is not unique. If e; is an eigenvector, then so is —e;. Also, A
is not unique either. We could have taken the negative roots of the eigenvalues but since we think of
them as standard deviations, it is easier to think of them as positive quantities. In our intermediary
step, we rotated the ellipse so that the major axis is aligned vertically in figure 1(c) but we could
have done it the other way around and arrived at the same conclusion.

3 Coloring Transform

The coloring transform is the inverse of the whitening transform. Here we see how to transform W,
a multivariate Gaussian variable whose components are i.i.d with unit variance to X, a Gaussian
random vector with some desired covariance matrix.

Say you have S, a matrix whose n columns are n samples drawn from a whitened Gaussian
distribution. So S is of the form [Wy,...W,,] but what you want is n samples from a distribution
that has covariance matrix 3 and mean p. The first step is to perform the eigendocomposition of
your desired covariance matrix 3 as in equation 4, which we reproduce here.

Y = ®ADT = PAzAzPT (11)



where A is a diagonal matrix with the eigenvalues, \;, of 3 on the diagonal and ® is the matrix of
corresponding eigenvectors, e;. In addition, the columns of ® are orthonormal so that

o1 =7 (12)

The first step is to scale the samples so their spread reflects your desired variances along the
principal axes. This step changes the spherical contours to elliptical ones.

Y = AzS (13)

The next step is to rotate the data points so that they are now correlated.

X = &Y = ®A:S (14)

Figure 2: Scatter plots and Contours. All contours are at Mahalanobis distance 1. (a) Original white
density of W, (b) scaled density of Y, (c) colored density of X.

Figure 2 shows the mapping from W to Y to X for a bivariate distribution with

10 —6
=[5 7]

It is just like figure 1 from right to left. Finally, add p to your samples so that the mean is
translated from the origin to your desired location. The transform can be implemented in MATLAB
with the following code.

function[X] = colortran (mu, CovX)

% Find eigenvectors and eigenvalues
[Phi,Lam] = eig(CovX);

Generate 1000 samples of white data

= mvnrnd ([0 0],eye(2),1000)";

Scale to desired variances

= sqgrt (Lam) *S;

Rotate or correlate samples

= Phix*Y;

Add the mean vector to every column of X
= bsxfun (@plus, X, mu) ;

o\

n

o

>

o

>

o\

>

end



4 Summary

So we see that data whitening can be broken down into two steps:

1. Decorrelation. In other words, a rotation that maps the data so that the axes along which the
original data has the largest variance are aligned with your co-ordinate axes. The resulting
covariance matrix is diagonal. This is really just a change of basis.

2. Scaling so that the principal axes are each of unit length. The data is squeezed or stretched
along individual axes depending on whether the variance along said axis is greater or less than
one. The resulting covariance matrix is identity.

We can summarize coloring as the inverse of whitening. I also find it helpful to compare it with
the simplest case, when we are working with scalars. Recall that multiplying a random variable with
a constant produces another whose standard deviation is scaled by a factor equal to said constant.
In other words If W is a random variable of unit variance and X = c.W, then W has standard
deviation c.1 and variance ¢?. This multiplication is a linear transform. In the multivariate case, we
are expressing our desired covariance matrix as a product

> = EET

1 . - . . .
where E = ®Az. This E is is our linear transform and is analogous to ¢ in the scalar case.

I am aware that MATLAB comes with the mvnrnd command that can generate data points from
any multivariate Gaussian distribution but hopefully, this material provides sufficient background to
allow the reader to not only whiten data but also to transform data from one distribution to another
in other programs that are not equipped with the same out of the box capabilities as MATLAB. A
summary of this process is presented in figure 3.
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Figure 3: Summary diagram of whitening and coloring process
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