
Problem 1
In the Parametric Method section of the course, we learned how to draw a separation hyperplane between two classes by obtaining w0, the argmax of the cost function J(w)=wTSEw/wTSww. The solution was found to be w0=Sw-1(m1-m2), where m1 and m2 are the sample means of each class, respectively.
Some students raised the question: can one simply use J(w)=wTSEw instead (i.e. setting Sw as the identity matrix in the solution w0? Investigate this question by numerical experimentation.
Background & Method
Fisher’s linear discriminant is a classification method that projects high-dimensional data onto a line y=wTx and performs classification in this one-dimensional space. The goal is to find w such that the projection maximizes the distance between the means of the two classes while minimizing the variance within each class. Thus we can write the problem as

wopt ∞ Sw-1(m1-m2)

where is “between class scatter matrix” and is “within class scatter matrix”.

Experiment
150 samples were generated for the experiment.
[image: image1.jpg]180 sample data

Class!
Class2

*
+

Fig1a. Sample Data
[image: image2.jpg]00

002

0m

00t

002

003

004

005

Projection Data

Projection Class 1
Projection Class 2

0

100

150

Fig1b. Projection Data
[image: image3.jpg]10

-0

15

Projection Data for Identity

Projection Class 1
Projection Class 2

0

100

150

Fig1c. Projection Data for Sw as identity matrix
Figure 1b is the optimal projection given and Figure 1c is the results obtained by considering Sw as identity matrix. We inspected from the results that by setting, the optimal solution wopt is normalized. However in the Fisher’s Linear Discriminating analysis, we are only interested in direction of projection, the resulting range of the project is not as important.

Problem 2
Obtain a set of training data. Divide the training data into two sets. Use the first set as training data and the second set as test data.

a) Experiment with designing a classifier using the neural network approach.

b) Experiment with designing a classifier using the support vector machine approach.

c) Compare the two approaches.

Note: you may use code downloaded from the web, but if you do so, please be sure to explain what the code does in your report and give the reference.

a) Neural Network
Background & Method
In this section we implemented an artificial multilayer neural network with one hidden network, in particular, the Back Propagation network, which is widely used and on which many others are based. An illustration is shown in Figure 2a.
[image: image4.png]mmmmm

Fig 2a. An example of ANN
The Back Propagation algorithm is based on the gradient descent error with the following steps:

· Select a network architecture

· Initialize the weights to small random values

· Compute the corresponding outputs according to the training set

· For each epoch and each training example

· Input the training example to the network and compute the network outputs

· For each output unit k, we compute its error

· δk <- outk(1-outk)(tark-outk)

· For each hidden unit h, we compute its error

· δk <- outk(1-outk)Ʃk outputs(wh,kδk)

· Update each network weight wij
· δk <- wij + Δwij
· Δwij = ηδjxij
Through each iteration, the algorithm minimizes the error between the targeted output and the real output. We initialized the weights near to zero for convergence purposes, and set the algorithm to terminate when the change in the criterion function J(w) (a function of the error) is smaller than some preset value. We employed the sigmoid activation function as our output function.
For this experiment we have taken two different Gaussian classes or patterns, and we have divided them using one part as a training set and the other one as a test set. The goal is to verify that error training decreases as a function of epochs and the error in the test data decreases too, but is higher than the previous one. We have experimented with several network configurations (different number of nodes).
Experiment:
Case1:

Mean1=-1; Mean2=1; Standard deviation1=21/2; Standard deviation=21/2. The training and testing data had 200 samples each.

[image: image5.jpg]Training Eror vs #of Epochs

——N1=2N2=3N3=2
——— N1=3 N2=4 N3=2
——N1=10N2=3

Traning Error

01

Fig2b. Training Error as a function of Epochs
Sample training error at different epochs

	Number of Nodes
	2 epochs
	8 epochs
	16 epochs
	20 epochs

	1
	0.2502
	0.0635
	0.0313
	0.0250

	2
	0.2505
	0.0631
	0.0315
	0.0250

	3
	0.2500
	0.0625
	0.0313
	0.0250

	4
	0.2497
	0.0623
	0.0308
	0.0249

Case2:

Mean1=-4; Mean2=4; Standard deviation1=2; Standard deviation=2. The training and testing data had 200 samples each.

[image: image6.jpg]Training ertor vs # of Epachs

——N1=2N2=3N3=2
——— N1=3 N2=4 N3=2
——N1=10N2=3

Traning error

01

Fig2c. Training Error as a function of Epochs
Sample training error at different epochs
	Number of Nodes
	2 epochs
	8 epochs
	16 epochs
	20 epochs

	1
	0.3037
	0.0680
	0.0361
	0.0251

	2
	0.2445
	0.0600
	0.0287
	0.0245

	3
	0.2754
	0.0628
	0.0313
	0.0261

	4
	0.2545
	0.0641
	0.0317
	0.0301

It is noted that the correct way to train the network is to apply the training samples of the first class first and change the weights in the network ONCE. Next to apply the training samples of the second class. Once we have all the classes trained once, we return to the first one again and repeat the process until the stop criterion is achieved. Figure 2b and 2c showed plots f training error as functions of epochs, while the tables gave numeric values at sample epochs. The different cases represent different network configurations. We define N1= number of nodes in the first layer, N2 = number of nodes in the hidden layer, N3 = number of nodes in the last layer. As stated in the experiments, in all the simulations we have taken half of samples as training samples and the other half for testing purposes. So we see that for small number of epochs the error training is small when use more nodes, regardless at which layer they are. This is due to the larger number of weights (order of freedom) that it used.
b) Support Vector Machine
The training and testing data set contained 100 samples randomly generated. The SVM uses a Gaussian kernel for classifying the data.
[image: image7.jpg]Sample Data

o
+

Class 1
Class 2

ECE

Fig 2d. Data used for testing SVM

[image: image8.jpg]90,2049

90,2049

90,2049

90,2049

90,2049

90.2049

90,2049

90,2049

90,2049

90.2049

90,2049
(]

Training Ertor

10

12

14

Fig 2e. Training Error
Problem 3
Using the same data as for question 2 (perhaps projected to one or two dimensions for better visualization),

a) Design a classifier using the Parzen window technique.

b) Design a classifier using the K-nearest neighbor technique

c) Design a classifier using the nearest neighbor technique.

d) Compare the three approaches.

For all the 3 techniques the training and the testing data were each 100 samples. The sample data contained two classes and were randomly generated using mean1=1; var1=2 and mean2=-1; var2=2.

[image: image9.jpg]04

03

03

025

02

015

01

005

Training Probability

Fig 3a. Training Probability values for the Parzen window technique

[image: image10.jpg]05

Training Probability

045

04

03

03

02

02

015

01

005

—— Class 1
——Class 2

10

Fig 3b. Training Probability values for the K-nearest neighbor technique
[image: image11.jpg]Training Probability

——class 1

——class 2

10

Fig 3c. Training Probability values for the Nearest Neighbor technique
 For the K-Neighbor Technique the K value was chosen as ceil(sqrt(50)).

	Classification Technique
	Error Probability

	Parzen Window
	0.2480

	K-Nearest Neighbor
	0.2200

	Nearest Neighbor
	0.4400

3(d) Comparison

We can see from the error probabilities that the parzen window and k-nearest neighbor perform better than the nearest neighbor technique. Moreover K-nearest neighbor classification has the least error probability and hence it performs better than all other techniques.
Appendix A:

The appendix contains the matlab codes used for this homework.

Problem 1:
paramet.m
% Hw 2 p1 Parametric Method

clear all

close all

% sample points

n1=150;

n2=150;

% 1-dim

mean_x1 = 2;

var_x1 = 4;

mean_x2 = 0;

var_x2 = 1;

x1 = mean_x1 + sqrt(var_x1)*randn(1,n1);

x2 = mean_x2 + sqrt(var_x2)*randn(1,n2);

% 2-dim

Mean1 = [0 0]';

Mean2 = [2 2]';

std1 = [1 0; 0 1];

std2 = [1 0; 0 1];

data_class1 = mvnrnd(Mean1,std1,n1);

data_class2 = mvnrnd(Mean2,std2,n2);

plot(data_class1(:,1),data_class1(:,2),'b*');hold on;

plot(data_class2(:,1),data_class2(:,2),'r*');

x1=data_class1;

x2=data_class2;

figure,

mhu_1=(1/n1)*(sum(x1));

mhu_2=(1/n2)*(sum(x2));

bet_scatter= (mhu_1-mhu_2);

% S_B = eye(f,c);

S_W1 = size(x1,1)*cov(x1);

S_W2 = size(x2,1)*cov(x2);

S_W = S_W1+S_W2;

[f,c]=size(S_W);

S_W=eye(f,c);

w_opt=S_W\bet_scatter';

% Projections

y1 = x1*w_opt;

y2 = x2*w_opt;

bin = 0.1;

x = -25:bin:25;

xa = 1:length(y1);

xb=1:length(y2);

plot(xa,y1,'b',xb,y2,'r');

%plot(y1,'k');hold on;

%plot(y2,'g');hold off;

Problem 2:
bp.m
% performs backpropagation algorithm

%close all;

clear all;

%rand('state',100);

% the neurons have a sigmoid function activation

% data length

N1 = 2;

N2 = 3;

N3 = 3;

% length training set

% iter = epochs

iter = 20;

iter_test = 20;

Target = zeros(1,N3);

% initialize weights

W_hid_in = rand(1,N1);

W_hid_out = rand(1,N2);

error_epoch = zeros(1,iter);

error_epoch_test = zeros(1,iter_test);

Mean1 = -1;

Mean2 = 1;

std1 = sqrt(2);

std2 = sqrt(2);

data_class1 = Mean1 + std1*randn(1,N1);

data_class2 = Mean2 + std2*randn(1,N1);

for k=1:iter

if (mod(k,2)==0)

 training_data = data_class1;

else

 training_data = data_class2;

 epoch=k,

end

for i=1:N1

 sig_output(i) = training_data(i);

end

% training the neural network step

% outputs

for n=1:N3

 in_last(n)=0;

for j=1:N2

 input_hid(j)=0;

for i=1:N1

 input_hid(j) = input_hid(j)+W_hid_in(i)*sig_output(i);

end

W_old_hidden(:,j) = W_hid_in';

 sig_output_hid(j) = (1)/(1+exp(-input_hid(j)));

 in_last(n) = sig_output_hid(j)*W_hid_out(j)+in_last(n);

end

out(n) = (1)/(1+exp(-in_last(n)));

W_old_output(:,n) = W_hid_out';

end

lear_rate = 0.25;

% backpropagation step

% calculate errors of output neurons

for i=1:N3

 delta(i) = out(i)*(1-out(i))*(Target(i)-out(i));

end

% Change output layer weights

for i=1:N2

 for j=1:N3

 W_new_output(i,j) = W_old_output(i,j)+lear_rate*delta(j)*sig_output_hid(i);

 end

end

% back-propagate

for i=1:N2

 ssuumm=0;

 for j=1:N3

 ssuumm = delta(j)*W_new_output(i,j)+ssuumm;

 end

 delta_hid(i) = sig_output_hid(i)*(1-sig_output_hid(i))*ssuumm;

end

% change hidden layer weights

for i=1:N1

 for j=1:N2

 W_new_hidden(i,j) = W_old_hidden(i,j)+lear_rate*delta_hid(j)*training_data(i);

 end

end

W_old_output = W_new_output;

W_old_hidden = W_new_hidden;

% forward pass with the new weights

for i=1:N1

 sig_output(i) = training_data(i);

end

% outputs

for n=1:N3

 in_last(n) = 0;

 W_hid_out = W_new_output(:,n)';

for j=1:N2

 input_hid(j) = 0;

 W_hid_in = W_new_hidden(:,j)';

for i=1:N1

 input_hid(j) = input_hid(j)+W_hid_in(i)*sig_output(i);

end

 sig_output_hid(j) = (1)/(1+exp(-input_hid(j)));

 in_last(n) = sig_output_hid(j)*W_hid_out(j)+in_last(n);

end

output(n,k) = (1)/(1+exp(-in_last(n)));

error(k) = abs(Target(n)-output(n,k));

end

error_epoch(k) = (error_epoch(k)+error(k))/k;

end

x=1:iter;

plot(x,error_epoch,'k');

hold on;

y=zeros(1,iter_test);

%% Testing...

for k=1:iter_test

data_class1 = Mean1 + std1*randn(1,N1);

data_class2 = Mean2 + std2*randn(1,N1);

% Generating the test data

p=randperm(2);

if (p(1)==1)

training_data = data_class1;

else

training_data = data_class1;

end

epoch=k,

for i=1:N1

 sig_output(i) = training_data(i);

end

% outputs

for n=1:N3

 in_last(n) = 0;

for j=1:N2

 input_hid(j) = 0;

for i=1:N1

 input_hid(j) = input_hid(j)+W_hid_in(i)*sig_output(i);

end

 sig_output_hid(j) = (1)/(1+exp(-input_hid(j)));

 in_last(n) = sig_output_hid(j)*W_hid_out(j)+in_last(n);

end

outpu_test(n,k) = (1)/(1+exp(-in_last(n)));

error_test(k) = abs(Target(n)-outpu_test(n,k));

end

error_epoch_test(k) = (error_epoch_test(k)+error_test(k))/k

y(k)=(y(k)+1)/k;

end

x=1:iter_test;

% plot(x,error_epoch_test,'r'); hold off;

% W_hid_in

% W_hid_out

svm.m
clear; % clear variables from memory

close all;

% read in the dataset

nsample = 100;

X = zeros(nsample,1);

Y = zeros(nsample,1);

fid = fopen('test.data', 'r'); % open dataset for read

%fid = fopen('1d.clean', 'r');

[Dataset, count] = fscanf(fid, '%f %f', [2, nsample]); % read in examples (x,y) as a 2 * nsample matrix

fclose(fid); % close file id

Dataset = Dataset'; % matrix transpose, one of the matrix operations in MatLab

Mean1 = 1;

Mean2 = -1;

std1 = 2;

std2 = 2;

data_class1 = Mean1 + std1*randn(1,nsample/2);

data_class2 = Mean2 + std2*randn(1,nsample/2);

X(1:nsample/2) = data_class1;

X(nsample/2+1:nsample) = data_class2;

X = sort(X);

plot(data_class1,'ko');hold on;

plot(data_class2,'g+');

p = randperm(nsample);

Y(p(1:nsample/2)) = -1;

Y(p(nsample/2+1:nsample)) = 1;

%X = Dataset(:,1); % first column of matrix Dataset is assigned to X

%Y = Dataset(:,2); % second column of matrix Dataset is assigned to Y

% the trade-off weights we want to investigate

C = [0.1, 1, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 100000];

Margin = []; % margin; initialized as null

nSV = []; % number of support vector;

nMis = []; % number of misclassification;

Err = []; % training errors;

X,Y,

for n = 1 : max(size(C)),

 % construct Hessian matrix; Hessian matrix is the Q matrix in our slides; also called Kernel matrix

 H = zeros(nsample, nsample); % initialize H; set H to a nsample * nsample zero matrix

 for i = 1 : nsample,

 for j = 1 : nsample,

 H(i,j) = X(i)*X(j)*Y(i)*Y(j); % !!! please write your answer here !!!

 end

 end

 H = H+1e-10*eye(size(H)); % add 1e-10 to the main diagonal of H; a trick to make H stable

 % H = (H+H')/2; % Setting Hessian symmetric

 F = -ones(nsample,1); % F' * Alpha corresponds to sigma_i(Alpha_i) in object function

 % set up equality constraints

 A = Y'; % corresponds to sigma_i(Alpha_i * Y_i) = 0

 b = 0;

 % set up upper and lower bounds for alpha: LB <= Alpha <= UB

 LB = zeros(nsample,1);

 UB = C(n)*ones(nsample,1);

 % starting point of alpha

 Alpha0 = zeros(nsample, 1);

 % optimizing alpha with quadratic programming

 [Alpha] = quadprog(H, F, [], [], A, b, LB, UB, Alpha0),

% [Alpha,FVAL] = quadprog(H, F, A, b),

 % Alpha = qp(H, F, A, b, LB, UB, Alpha0, 1);

 % tolerance for support vector detection; we will ignore the alphas less than tol

 tol = 0.0001;

 % calculate weight

 w = 0;

 for i = 1 : nsample,

 w = w + Alpha(i) * Y(i) * X(i);

 end

 % calculate bias

 bias = 0;

 b1 = 0;

 b2 = 0;

 for i = 1 : nsample,

 if (Alpha(i) > tol & Alpha(i) < C(n) - tol),

 b1 = b1 + X(i) * w - Y(i);

 b2 = b2 - 1;

 end

 end

 if b2 ~= 0,

 bias = b1 / b2;

 else % unlikely

 b1 = 0;

 for i = 1 : nsample,

 if Alpha(i) < tol,

 b1 = b1 + X(i) * w - Y(i);

 b2 = b2 - 1;

 end

 end

 if b2 ~= 0,

 bias = b1 / b2;

 else % even unlikelier

 b1 = 0;

 for i = 1 : nsample,

 b1 = b1 + X(i) * w - Y(i);

 b2 = b2 - 1;

 end

 if b2 ~= 0,

 bias = b1 / b2;

 end

 end

 end

 % margin = 2 / ||w||

 Margin = [Margin, 2 / abs(w)]; % the operation A = [A, v] appends v to matrix A

 % number of support vectors

 nSV = [nSV, size(find(Alpha > tol), 1)];

 % calculate # of misclassification and training error

 m = 0;

 e = 0;

 for i = 1 : nsample,

 predict = w * X(i) + bias; % Y = w * X + b

 if predict >= 0 & Y(i) < 0,

 m = m + 1;

 end

 if predict < 0 & Y(i) >= 0,

 m = m + 1;

 end

 if Alpha(i) > tol, % consider support vectors only; why?

 e = e + 1 - predict * Y(i);

 end

 end

 nMis = [nMis, m],

 Err = [Err, e],

end

% plot C_margin, C_trainingerror, C_misclassification, C_nsupportvector

% please use your code to make better plots instead of ours

Z = zeros(size(C));

for i = 1 : size(C, 2)

 Z(i) = i;

end

figure

plot(Z, Margin);

title('Margin');

xlabel('C(i)');

figure

plot(Z, Err);

title('Training Error');

xlabel('C(i)');

figure

plot(Z, nMis);

title('# of Misclassification');

xlabel('C(i)');

figure

plot(Z, nSV);

title('# of Support Vector');

xlabel('C(i)');

Problem 3
Parzen.m
clear all

close all

n = 500;

train_data = n/2;

test_data = n/2;

% Data set 1: x1 with distribution N(a,b) (mean=a, var=b)

mean_x1 = 1;

var_x1 = 2;

x1 = mean_x1 + sqrt(var_x1)*randn(1,n);

x1_train = x1(1:train_data);

x1_test = x1(train_data+1:end);

% Data set 2: x2 with distribution N(a,b) (mean=a, var=b)

mean_x2 = -1;

var_x2 = 2;

x2 = mean_x2 + sqrt(var_x2)*randn(1,n);

x2_train = x2(1:train_data);

x2_test = x2(train_data+1:end);

% 1st estimation by Parzen window

d = 1; % dimention

x = -5:0.2:10;

L_x = length(x);

%setting h1

h1 = 1;

hn = h1/sqrt(train_data);

Vn = hn^d;

Q1 = zeros(1,train_data);

prob1_train = zeros(1,L_x);

Q2 = zeros(1,train_data);

prob2_train = zeros(1,L_x);

for i = 1:L_x

 for j = 1:train_data

 Q1(j) = 1/(sqrt(2*pi))*exp(-(x(i) - x1_train(j))^2/(2*hn^2));

 Q2(j) = 1/(sqrt(2*pi))*exp(-(x(i) - x2_train(j))^2/(2*hn^2));

 prob1_train(i) = prob1_train(i) + 1/train_data*1/Vn*Q1(j);

 prob2_train(i) = prob2_train(i) + 1/train_data*1/Vn*Q2(j);

 end

end

figure

plot(x,prob1_train,'k.-', x,prob2_train,'g.-')

% 2nd step classification and errors by Parzen window method

error1 = 0;

error2 = 0;

for i = 1:test_data

 parzen = find(abs(x-x1_test(i)) <= 0.1);

 if (prob1_train(parzen) < prob2_train(parzen))

 error1 = error1 + 1;

 end

 parzen2 = find(abs(x-x2_test(i)) <= 0.1);

 if(prob2_train(parzen2) < prob1_train(parzen2))

 error2 = error2 + 1;

 end

end

error_total = error1 + error2

error_parzen_prob = error_total/(2*test_data)

NN.m

% Nearest Neighbor

clear all

close all

% sample data

n = 100;

train_data = n/2;

test_data = n/2;

% Data set 1:

mean_x1 = 1;

var_x1 = 2;

x1 = mean_x1 + sqrt(var_x1)*randn(1,n);

x1_train = x1(1:train_data);

x1_test = x1(train_data+1:end);

% Data set 2:

mean_x2 = -1;

var_x2 = 2;

x2 = mean_x2 + sqrt(var_x2)*randn(1,n);

x2_train = x2(1:train_data);

x2_test = x2(train_data+1:end);

% function of kn (KNN)

kn = ceil(sqrt(train_data));

% function of kn (NN)

%kn = 1;

x = -5:0.2:10;

L_x = length(x);

p1_nn = zeros(1,L_x);

p2_nn = zeros(1,L_x);

for i = 1:L_x

 index_sort1 = sort(abs(x1_train - x(i)));

 V1 = 2 * index_sort1(kn);

 index_sort2 = sort(abs(x2_train - x(i)));

 V2 = 2 * index_sort2(kn);

 if (V1 > 0)

 p1_nn(i) = kn/train_data/V1;

 end

 if(V2 > 0)

 p2_nn(i) = kn/train_data/V2;

 end

 if (p1_nn(i)>10)

 p1_nn(i)=0;

 end

 if (p2_nn(i)>10)

 p2_nn(i)=0;

 end

end

figure

plot(x,p1_nn,'r.-',x,p2_nn,'b.-')

% Classification

error_nn_total = 0;

error1 = 0;

error2 = 0;

for i = 1:test_data

 j1_nn = find(abs(x-x1_test(i)) <=0.1);

 if (p1_nn(j1_nn) < p2_nn(j1_nn))

 error1 = error1 +1;

 end

 j2_nn = find (abs(x-x2_test(i))<=0.1);

 if(p2_nn(j2_nn) < p1_nn(j2_nn))

 error2 = error2 +1;

 end

end

error_nn_total = (error1 + error2)/2/test_data

1/25

