1. Let \(\pi + \mathbb{Q} = \{ \pi + q : q \in \mathbb{Q} \} \). Let \(\mathcal{A} \) be the \(\sigma \)-algebra generated by the sets \(\{ x \} : x \in \pi + \mathbb{Q} \). Without justification find all possible values for the Lebesgue measure, \(|A| \) if \(A \in \mathcal{A} \).

2. Let \(f : \mathbb{R}^n \to \mathbb{R}^n \) be continuous, and let \(G \) be an open set in \(\mathbb{R}^n \). Proof or counter-example: \(f(G) = \{ y | \exists x \in G \ with \ f(x) = y \} \) is measurable.

3. Let \(f_n \) be a sequence of functions in \(L^p, 1 \leq p < \infty \), which converge almost everywhere to a function \(f \) in \(L^p \). Show that \(f_n \to f \) in \(L^p \) iff \(||f_n||_p \to ||f||_p \).

4. Let \(f \) be a nonnegative Lebesgue measurable function on \((0, \infty)\) such that \(f^2 \) is integrable. Let \(F(x) = \int_0^x f(t)dt \) where \(x > 0 \). Show that

\[
\lim_{x \to 0^+} \frac{F(x)}{\sqrt{x}} = 0.
\]

5. Suppose that \(\{f_n\}_{n \geq 1} \) is an equicontinuous family of functions on a compact set \(K \) such that the family of functions is point-wise bounded.

(a) Show that \(\{f_n\}_{n \geq 1} \) is uniformly bounded on \(K \).

(b) Show that \(f(x) = \inf \{ f_n(x) : n \geq 1 \} \) is uniformly continuous on \(K \).

6. Suppose \(f \) is an integrable function. Prove that

\[
\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) \cos(nx)dx = 0.
\]