1. Show that an uncountable subset of the complex plane must have a limit point. Use this to prove that a non-constant holomorphic function has at most countably many zeroes.
2. Suppose that $\Omega \subset \mathbb{C}$ is a domain and that $f: \Omega \rightarrow \mathbb{C}$ is a continuous function. If f^{2} and f^{3} are both analytic, show that f is as well. Does this still hold if the assumption of continuity is dropped?
3. Suppose that f is analytic on the closed unit disk. Show that f is even if and only if its Taylor expansion at $z=0$ contains only even powers of z.
4. Let f and g be two analytic functions on a domain D, and suppose that

$$
f(z) \overline{g(z)}
$$

is real-valued. Prove that $f=c g$, where c is a real constant, or that $g=0$.
5. Find the radius of convergence for the power series.
(a)

$$
\sum_{n=1}^{\infty} \frac{n^{n}}{n!} z^{2 n}
$$

(b)

$$
\sum_{n=1}^{\infty} \frac{z^{n^{2}}}{n!}
$$

(c)

$$
\sum_{n=1}^{\infty} \frac{z^{n}}{(1+2 i)^{n}}
$$

6. Suppose that f is analytic in a neighborhood of 0 and that

$$
\sum_{n=0}^{\infty} f^{(n)}(0)
$$

converges. Show that f extends to an entire function.
7. Suppose that

$$
f(z):=\sum_{n=0}^{\infty} c_{n} z^{n}
$$

has radius of convergence R, with $0<R \leq \infty$. Let B_{R} denote the open ball of radius R, with the convention that $B_{\infty}=\mathbb{C}$.
(a) Show that f satisfies the Cauchy-Riemann equations on B_{R}. Carefully justify your steps.
(b) For each of the following, find an example or prove that none exists. Treat the cases $R<\infty$ and $R=\infty$ separately.
i. f is bounded on B_{R}.
ii. f extends to a continuous function on the closure of B_{R}. (if $R=\infty$, take this to mean that the limit exists as $z \rightarrow \infty$.)
iii.

$$
\lim _{|z| \rightarrow R}|f(z)| \quad \text { exists. }
$$

iv. f is surjective.
v. (here only treat $R<\infty$) An f which extends to a bounded, continuous function on \mathbb{C}, which is analytic for $|z| \neq R$.
(c) If $R=\infty$, characterize the topological closure of the image of f.
8. Let f be analytic near 0 and satisfy

$$
f^{\prime}(z)=q f\left(q^{2} z\right), \quad f(0)=1
$$

where $q \in \mathbb{R}$ is a constant with $0<q<1$. Determine the radius of convergence of the Taylor series for f centered at 0 .
9. Suppose that $f: \mathbb{C} \rightarrow \mathbb{C}$ is continuous (not necessarily holomorphic) and let $z_{0} \in \mathbb{C}$. Show that

$$
\lim _{r \rightarrow 0^{+}} \int_{C_{r}\left(z_{0}\right)} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)
$$

