1. Can you find a function from $[0,1] \rightarrow \mathbb{R}$ which has infinitely many discontinuities but is still Riemann integrable?
2. Suppose $f:[0,1] \rightarrow \mathbb{R}$ is a function such that for all $a, b\{x: a \leq f(x)<$ $b\}$ is a union of disjoint intervals
(a) Show that f is Riemann integrable.
(b) Let $m\{x: k / N \leq f(x)<k / N\}$ be the sum of the lengths of the disjoint intervals of $\{x: k / N \leq f(x)<k / N\}$ (for example, $m([1 / 2,3 / 4] \cup[7 / 8,1))=1 / 4+1 / 8$.) Show

$$
\sum_{k=0}^{N^{2}} \frac{k}{N} m\{x: k / N \leq f(x)<k / N\} \rightarrow \int f
$$

as $N \rightarrow \infty$.

