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Question1: 

 

Fisher linear discriminant analysis (FDA) is one of the common parametric methods. It looks 

for directions that are efficient for discrimination. Projection onto one direction w, two-class 

problem is defined below: 

(1) Samples: n d-dimensional vectors nxx ......1 , consisting of two subsets 21 ,DD  

(2) Projected samples: xy Tω= , two subsets 21 ,YY  

(3) Criterion: maximize the Fisher linear discriminant 
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Maximizing the Fisher linear discriminant—the linear function generating the maximum ratio 

of between-class scatter to within-class scatter, yields the optimal projection (a projection that 

generates large separation between the projected means while reducing the scatter of the 

projected data). ( )21

1
mmSw

vvv −= −∗ω  

The main purpose of this question is to investigate the performance of the classifier using 

( )21

1
mmSw

vvv −= −∗ω as the projection versus using ( )21 mmI

vvv −=ω  (setting wS as the identity 

matrix).  The following steps were followed for programming: 

 

(1) Produced correlated Gaussian data sets from class 1 and class 2.  Data from 

class 1 and class 2 has the different means ( ∆+= 12 mm
vv

to generate separation 

between the classes.  The mean of class is set as
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the covariance is the same (which means 21 ∑=∑ ). 
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(2) Compute the optimal projection ( )21

1
mmSw

vvv −= −∗ω  by using above equation 

and criteria.  

(3) Apply the projection to the data: by
vvv =∗ω . 

(4) Find the threshold to classify the data: 
2

~~
21

0

mm −=ω for Gaussian data from 

two classes with equal covariance matrices. 

(5) Classify the ith data point as from class 1 if 0ω>ib , else from class 2.  Count 

number of true and false classifications. 

(6) Apply the same procedure for ( )21 mmI

vvv −=ω  on same data. 

(7) Compare the result of classification using ∗ωv  versus using Iωv . 

 

Three experiments were applied to evaluate the result of the two different methods ( ∗ωv  

versus Iωv ): (1) performance as a function of separation between two classes, (2) performance 

as a function of feature vector dimension size, and (3) performance as a function of number 

of samples. 

 

Experiment 1: Separation 

From the above step, ∆+= 12 mm
vv

has been set. To evaluate performance as a function of 

separation between classes, ∆ was varied from 0 to 5 with interval 0.05, while the feature 

vector size is kept at N = 5 and the number of samples for each class is 10000. Figure 1 

shows the performance as a function of data separation. ∗ωv  generates more correct 

classifications than using Iωv (setting wS as the identity matrix) at all separations except the 

situation when there is no separation between the means (∆=0). As to be observed, at very 

small (say below 0.5) and very large separations (say above 4.5), the performance of both 

methods are somewhat similar – but at intermediate separations (say between 1.5 and 3), 

method ∗ωv  is better in accuracy to method Iωv by around 10%. It can be expected, as when the 

data has no separation, no method will achieve more than chance accuracy, no matter how 

good the algorithm applies. And when there is a very large separation, any good method 

should produce great classification. 
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Figure 1: Performance as a function of data separation 

 

Experiment 2: Feature vector dimension size (N) 

Feature vector dimension size N was varied from 2 up to 100, while the separation is set at ∆ 

= 1.5 and the number of samples for each class is 10000.  Figure 2 displays the results, 

showing that the performance of ∗ωv is better to that of method Iωv when the dimension of 

feature vector goes higher. The difference of the accuracy is up to 10% when the dimension 

of the feature vector is above 25. Also, an increase in dimension size when N is small 

([2:2:40]) results in a big increase in accuracy for both algorithms. However, an additional 

increase in dimension size when N is large ([50:10:100]) results in insignificant improvement 

in accuracy for both algorithms   
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Figure 2: Performance as a function of feature vector dimension size (N) 

 

Experiment 3: Data sample size (M) 

To evaluate performance as a function of data sample size, number of samples M for each 

class was different (from 100 to 10000), while the separation is set at ∆ =1.5, and the feature 

vector dimension size is 5. Figure 3 illustrates the results. As to be observed, while method 
∗ωv  outtakes Iωv  at all sample sizes, neither method presented an increase in accuracy as 

sample size grows. 
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Figure 3: Performance as a function of data sample size (M)  
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Discussion of Results 

In all the simulations discussed above, method ∗ωv  accomplished better performance over Iωv .  

While the simulations by no means cover all possible cases, the results do show a large 

degree of certainty that ∗ωv  is better. From the Fisher discriminant 
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.  Maximizing ( )ωvJ  finds the projection ∗ωv  that increases the 

separation between the means of the projected data as well as reducing the within-class 

scatter of the data to produce minimal overlap between classes. On the contrary, the 

projection ( )21 mmI

vvv −=ω  does not account for within-class scatter – resulting in a sub-

optimal projection that while separating the means of the projected data, does not look for 

optimizing the variance/scatter of the projected data. Thus, method ∗ωv  can be predicated to 

accomplish better performance than method Iωv . 

 

Question2: 

 

Neural Network: 

Design a classifier using the neural network approach versus the support vector machine. 

The neural network method used in this report is part of the Neural Network Toolbox in 

Matlab (The Mathworks). Particularly, the following functionalities were used for neural 

network classification:  

(1) net = newpnn(P, T, Sread):  Implements a probabilistic neural network (PNN; a kind 

of radial basis network suitable for classification problems) that is suitable for 

classification. The newpnn function creates a two layer network by calling on a 

variety of functions from the Neural Network Toolbox. The first layer has radbas( ) 

neurons, and calculates the weighted inputs with dist( ) and its net input with 

netprod( ). The second layer has compet( ) neurons, and calculates its weighted input 

with dotprod( ) and its net inputs with netsum( ). The main function newpnn( ) accepts 

an input matrix P of input vectors and an input matrix T of target class vectors, and 

returns a new probabilistic network. 

(2) a = sim(net,P): simulate a Simulink model. It uses the new neural network designed 

by newpnn( ) to classify data matrix P.  

To evaluate the performance of this probabilistic neural network, a set of training data was 

used to design a new neural data, and a separate set testing data was used to compute the 

accuracy of the algorithm. 

 

Support Vector Machine: 

The support vector machine (SVM) algorithm utilized in this report is authored by 

Mangasarian and Musicant in the department of computer sciences at the University of 

Wisconsin.  The algorithm is named Lagrangian Support Vector Machines (LSVM) and is 
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freely available online at http://www.cs.wisc.edu/dmi/lsvm/. The technical report detailing 

LSVM is also available online from ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-06.ps.  

Mangasarian and Musicant developed an implicit Lagrangian for the dual of a simple 

reformulation of the standard quadratic program of a linear support vector machine, leading 

to the minimization of an unconstrained differentiable convex function with dimensionality 

equal to number of classified points. The minimization problem is solved by a linearly 

convergent Lagrangian support vector machine algorithm, requiring the inversion at the 

outset of a single matrix with the order of dimensionality equal to the original input space 

plus one.  Classification was performed by training the LSVM – its accuracy was assessed 

with a separate set of testing data. 

 

Three experiments were applied to evaluate and compare the performance of PNN and 

LSVM: (1) performance as a function of separation between two classes, (2) performance as 

a function of feature vector dimension size, and (3) performance as a function of number of 

samples. 

 

Experiment 1: Separation 

Recall that ∆+= 12 mm
vv

. To evaluate performance as a function of separation between classes, 

∆ was varied from 0 to 5 ([0:0.05:5]), while the feature vector size is kept at N = 5 and the 

number of samples for each class is 2500. Half the sample from each class was used as 

training data, and the other half utilized as testing data. Figure 4 shows the results of this 

simulation. As to be observed from Figure 4, LSVM achieves better accuracy with small 

separations (< 1.2), PNN overtakes LSVM in accuracy at approximately ∆ = 1.2. While PNN 

almost accomplishes perfect accuracy at ∆ = 4, LSVM only has an accuracy of less than 90%.   
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Figure 4: Performance as a function of data separation 
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Experiment 2: Feature vector dimension size (N) 

In this experiment, feature vector dimension size N was varied from 1 to 40, while the 

separation is set at ∆ = 1.5 and the number of samples for each class is 2500 (half used as 

training data, remaining half used as testing data). Figure 5 is the results, showing that while 

PNN achieves better performance at low dimension sizes (< 12), but it fails at higher 

dimension sizes and only accomplishes chance accuracy. LSVM, on the contrary, gradually 

improves in accuracy as feature vector dimension size goes higher. 
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Figure 5: Performance as a function of feature vector dimension size (N) 

 

Experiment 3: Data sample size (M) 

In this experiment, the number of samples M for each class was varied from 100 to 2500 

while the separation is set at ∆ = 1.5 and the feature vector dimension size (N) is 4. Half of 

the samples (M/2) were used for training and the rest for testing. Figure 6 shows that PNN 

consistently achieves better accuracy than LSVM at the given separation and dimension size 

4, though increasing sample size past around 1000 does not increase accuracy for either 

method. Figure 7 shows the results, showing that PNN achieves better accuracy than LSVM 

in most of the given separation and dimension size 5, though increasing sample size past 

around 1000 does not increase accuracy for either method. It is consistent with the 

observation in experiment 2 which indicates LSVM gradually improves in accuracy as 

feature vector dimension size goes higher while PNN performs worse accuracy in higher 

feature vector dimension. 
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Figure 6: Performance as a function of data sample size (M) with N=4 
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Figure 7: Performance as a function of data sample size (M) with N=5 

 

Experiment 4: Distribution  

To evaluate performance of LSVM and PNN for data with different distributions, Gaussian, 

Exponential, and Uniform random data were generated. Number of samples M for each class 

was 2500, the separation of the means was set at ∆ = 1.5, and feature vector dimension size 

was 5. Table 1 showed that PNN achieved better accuracy for the Gaussian and exponential 

data. Both methods achieved chance accuracy for the uniformly distributed data.  
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 Gaussian Exponential Uniform 

PNN 77.44% 74.80% 48.16% 

LSVM 74.24% 73.20% 48.88% 

Table 1: Accuracy of PNN and LSVM with different distributions with N=5 

 

From the simulations conducted above, both PNN and LSVM are shown to have some 

strengths and weaknesses.  PNN outperforms LSVM when the separation is large and feature 

vector dimension size is small.  PNN fails with large feature vector dimension sizes, while 

LSVM shows continued improvement in accuracy with increasingly large dimension sizes. 

PNN and LSVM are two specific algorithms examined here, so the conclusion should not be 

generalized to all support vector machines and neural networks. Accuracy is expected to vary 

depending on the robustness of each algorithm.  

Question 3 

This question investigates applying the methods of Parzen windows, K-nearest neighbors, 

and nearest neighbor to classification. 

 

Parzen Windows 

Parzen windows classification is a technique for nonparametric density estimation, which can 

also be used for classification. Using a given window function, this technique approximates 

the distribution of a given training set using a linear combination of window centered at a 

observed point 0x
v
to compute and sum the contribution from each point of the training data set. 

Applied to classification, a test point is labeled by using the window function to compute a 

weighted mean of the contribution from the training points in each of the classes. The test 

point is labeled to be from the class with the maximum weighted mean. While the choice of a 

window function is important, the choice of a sensible window side-length is crucial to 

accurate density estimation and classification. A small window length may lead to sharp 

behavior in the density estimate while an excessive large window length may average out the 

details of the data’s underlying distribution. To simulate the effect of window length on the 

density estimate, the following steps were taken: 

• Generate M=5000 samples from a Uniform distribution ( )1,0~UX . 

• Use a given Uniform window of length h 

• Visualize the density estimate as a function of h and x using mesh( ) 

• Compute the mean squared error (MSE) of the density estimate for each window size 

h using the known underlying Uniform distribution 

• Repeat procedure with data from a univariate Gaussian distribution ( )1,5.0~ NX . 
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Figure 8: Density estimate as a function of window length for Uniform data 

 

Figure 8 shows the density estimate of a data set generated from the uniform distribution. As 

can be observed, with a large window size, the density estimate starts to appear Gaussian 

(partly because the window function is Gaussian). The minimum MSE occurs when h=0.065.  

If the underlying distribution is known, perhaps a window function of the shape of that 

particular probability density function with an appropriate window size would generate the 

best density estimate. However, in reality, the underlying distribution is complex and barely 

known, and thus a generic Gaussian window function is generally used.  

 

As can be observed from Figure 9, small window length results in sharp behavior of the 

density estimate while a large window size produces excessive averaging. The subplot with 

the MSE in fact confirms that optimal density estimation for this Gaussian data is achieved 

when h=0.295. 
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Figure 9: Density estimate as a function of window length for Gaussian distributed data 

 

Nearest Neighbor and K-Nearest Neighbor 

Nearest neighbor and K-nearest neighbor are simple methods used for classification. Using a 

set of training data, the nearest neighbor approach classifies a test point to be from the class 

of the nearest training data point. The K-nearest neighbor approach examines K training data 

neighbors surrounding a test point, and classifies the test point to be from the class who has 

more points closer to the testing point. Figure 10 shows an example of the nearest neighbor 

rule. The circle represents the unknown testing sample and its nearest neighbor comes from 

the red class, it is labeled as red class.  

 

 

Figure 10: The NN rule 
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Figure 11 illustrates the K-nearest neighbor rule. Of the three training points closest to the 

circle testing point, two are from the blue class and one from the red class, therefore the 

testing point is labeled to be from the blue class. 

 

Figure 11: The KNN rule with k=3 

 

As before, to evaluate and compare the performance of Parzen windows, nearest neighbors 

and K-nearest neighbors, several simulations were performed: (1) performance as a function 

of separation between classes, (2) performance as a function of feature vector dimension size, 

and (3) performance as a function of number of samples. 

 

Experiment 1: Separation 

Recall that ∆+= 12 mm
vv

. To evaluate performance as a function of separation between classes, 

∆ was varied from 0 to 5, while the feature vector size is kept at N = 5 and the number of 

samples for each class is 1000. The window side-length for Parzen windows is h = 0.3. The 

number of neighbors for K-nearest neighbors is set at K = 7. 
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Figure 12: Performance as a function of data separation 

 

From Figure 12, as to be observed, the curve for Parzen windows almost completely overlaps 

the curve for nearest neighbors. K-nearest neighbor performances continually better accuracy 

at all separations, though the improvement is not very significant. 

 

Experiment 2: Feature vector dimension size (N) 

Feature vector dimension size N was varied from 1 to 40 to evaluate performance as a 

function of separation between classes, while the separation is set at ∆ = 1.5 and the number 

of samples for each class is 1000 (half used as training data, the other half used as testing 

data). The window side-length for Parzen windows is h = 0.3. The number of neighbors for 

K-nearest neighbors is set at K = 7. Repeatedly, K-nearest neighbors has continually higher 

accuracy as feature vector dimension size goes higher. As to be observed form Figure 13, 

increasing the dimension size does not leads to a significant increase in accuracy for either 

nearest neighbor or K-nearest neighbor. On the contrary, increasing the dimension size makes 

a decrease in accuracy for the Parzen windows methods at N > 10, accuracy declines to zero 

percent.  This can be explained by looking at the Gaussian window function: 

( )
( )

2
2/

2

2

1
u

N
eu

v

v
−

=
π

ϕ  

If N is very large, the constant in front of the exponential becomes too small to be represented 

as a type double in Matlab – it is rounded to zero. Therefore ( )uvϕ  from class 1 is equal to 

( )uvϕ  from class 2 which means all are equal to zero.  The script is coded to not assign a class 

when this occurs, resulting in zero accuracy. This suggests a crucial point when working with 
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Parzen windows: with very large feature vector dimension sizes, rounding error becomes a 

key issue.   
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Figure 13: Performance as a function of feature vector dimension size (N) 

 

Experiment 3: Data sample size (M) 

To evaluate performance as a function of data sample size, the number of samples M for each 

class was varied from 100 to 2500, while the separation is set at ∆ = 1.5 and the feature 

vector dimension size is 5. Note that half of the samples (M/2) is used for training and the 

rest for testing. The window side-length for Parzen windows is h = 0.3. The number of 

neighbors for K-nearest neighbors is set at K = 7. Again, K-nearest neighbors performs better 

accuracy than the two other methods. The accuracy curve for Parzen windows almost 

completely overlaps the curve for nearest neighbors. As to be observed from Figure 14 below, 

increasing sample size does not appear to increase performance for any of these three 

methods. 
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Figure 14: Performance as a function of data sample size (M) 

 

Discussion of Results 

For the experiments conducted to examine Parzen windows, nearest neighbor, and K-nearest 

neighbors, K-nearest neighbors has been proved to have the highest accuracy. Parzen 

window’s performance is almost exactly the same as that of nearest neighbor in almost all 

cases examined here. Though this may be the case here, it is expected that window size and 

window length will significantly change the performance of Parzen windows classification 

depending on the circumstance. Similarly, the value for K may also be expected to change the 

accuracy depending on the situation. 
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% Question1 

clc; close all ; 

clear all ;  

difvec=0:0.05:5; 

% Nvec=[2:2:40 50:10:100];  

% Mvec=[100:50:10000];  

ite=length(difvec); 

% ite=length(Nvec);  

% ite=length(Mvec);  

  

C1=zeros(1,ite); 

C2=C1;   

for  iii=1:ite 

    dif=difvec(iii); N=5; M=10000; 

    %N=Nvec(iii); dif=1.5; M=10000;     

    %M=Mvec(iii); dif=1.5; N=5;  

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % USER DEFINED MEAN AND VARIANCE % 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    % DATA IS IID HERE, MUST CORRELATE LATER  

    mu1=[1:N]/2; 

    sigma1=sqrt([1:N]); 

    % Separate data by adjusting mean and variance  

    mu2=mu1+dif; 

    sigma2=sigma1; 

  

    % diagonal of covariance of X from class 1  

    covX1=diag([sigma1.^2]'); 

    % diagonal of covariance of X from class 2  

    covX2=diag([sigma2.^2]'); 

  

    x1=zeros(M,N); x2=zeros(M,N); 

    for  ii=1:N 

        x1(:,ii)=random( 'normal' ,mu1(ii),sigma1(ii),[M 1]); 

        x2(:,ii)=random( 'normal' ,mu2(ii),sigma2(ii),[M 1]); 

    end  

  

    % GENERATING POSITIVE DEFINITE MATRIX TO CORRELATE DATA 

    c=zeros(1,N); c(1)=1; 

    r=ones(1,N); 
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    P=toeplitz(c,r); 

    Porth=orth(P);      % orthogonalize P  

    D=diag([1:N]);      % eigenvalues along the diagonal  

    E=inv(Porth)*D*Porth; 

  

    % generating correlated feature vectors  

    y1=x1*E; 

    y2=x2*E; 

    covY1=E*covX1*E'; 

    covY2=E*covX2*E'; 

    % Calculating means of Y1, Y2, correlated data for classes 1 and 2  

    muY1=mean(y1); 

    muY2=mean(y2); 

    Sw=(y1-repmat(muY1,M,1))'*(y1-repmat(muY1,M,1)) +(y2-

repmat(muY2,M,1))'*(y2-repmat(muY2,M,1)); 

  

    %%%%%%%%%%% 

    % with Sw %  

    %%%%%%%%%%% 

  

    w=inv(Sw)*(([muY1-muY2])'); 

    w_s=w; 

     

    y=[y1;y2]; 

    %b=repmat(w',2*M,1).*y;  

    b=y*w; 

  

    % For univariate Gaussian with same E, threshold w0  is midway between  

    % the two projected means  

    w0=(w'*muY1'+w'*muY2')/2; 

  

    ind1=find(b(1:M)>w0);        % class 1  

    ind2=find(b(M+1:end)<w0);    % class 2  

  

    TC=length(ind1)+length(ind2);   % true classifications  

    FC=2*M-TC; 

  

    TD_FD_inv=[TC FC] 

    C1(iii)=[TC/2/M*100]; 
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    %%%%%%%%%%%%%% 

    % without Sw %  

    %%%%%%%%%%%%%% 

    Sw=eye(N); 

    w=inv(Sw)*(([muY1-muY2])'); 

  

    y=[y1;y2]; 

    %b=repmat(w',2*M,1).*y;  

    b=y*w; 

  

    % For univariate Gaussian with same E, threshold w0  is midway between  

    % the two projected means  

    w0=(w'*muY1'+w'*muY2')/2; 

  

    ind1=find(b(1:M)>w0);        % class 1  

    ind2=find(b(M+1:end)<w0);    % class 2  

  

    TC=length(ind1)+length(ind2);   % true classifications  

    FC=2*M-TC; 

  

    TD_FD_iden=[TC FC] 

    C2(iii)=[TC/2/M*100]; 

end  

  

figure 

plot(difvec,C1, 'ro-' , 'linewidth' ,1, 'MarkerSize' ,4); hold on 

plot(difvec,C2, 'bo-' , 'linewidth' ,1, 'MarkerSize' ,4);  

ylabel( '% Correct Classification' ); 

xlabel( 'Separation of Data' ); 

title( 'Performance as a function of data separation' ); 

legend( '\omega^*=S_w^-1(m_1-m_2)' , '\omega_I=(m_1-m_2)' ) 

  

% figure  

% plot(Nvec,C1,'ro-','linewidth',1,'MarkerSize',4);  hold on  

% plot(Nvec,C2,'bo-','linewidth',1,'MarkerSize',4);   

% ylabel('% Correct Classification');  

% xlabel('Feature Vector Dimension Size (N)');  

% title('Performance as a function of feature vecto r dimension size');  

% legend('\omega^*=S_w^-1(m_1-m_2)','\omega_I=(m_1- m_2)')  
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% figure  

% plot(Mvec,C1,'ro-','linewidth',1,'MarkerSize',4);  hold on  

% plot(Mvec,C2,'bo-','linewidth',1,'MarkerSize',4);   

% ylabel('% Correct Classification');  

% xlabel('Number of Samples (M)');  

% title('Performance as a function of data sample s ize');  

% legend('\omega^*=S_w^-1(m_1-m_2)','\omega_I=(m_1- m_2)')  

  

% Question2 

clear all ;close all ;clc 

  

clc; close all ; 

clear all ; 

  

%difvec=0:0.05:5;  

%Nvec=[1:1:40];  

Mvec=[100:100:1000 1500:500:2500]; 

  

% ite=length(difvec);  

% ite=length(Nvec);  

ite=length(Mvec); 

  

C1=zeros(1,ite); 

C2=C1; 

  

for  iii=1:ite 

  

    %dif=difvec(iii); N=5; M=2500;  

    %N=Nvec(iii); dif=1.5; M=2500;  

    M=Mvec(iii); dif=1.5; N=5; 

  

    [y1 y2 muY1 muY2 covY1 covY2]=gen_Ngaussian(N,M ,dif); 

  

    % half of the data is for training, rest is for tes ting  

    tr1=y1(1:M/2,:); tr2=y2(1:M/2,:); 

    te1=y1(M/2+1:end,:); te2=y2(M/2+1:end,:); 

  

    %%%%%%% 

    % SVM % 

    %%%%%%% 
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    A=[tr1; tr2]; 

    len=length(A); 

    D=eye(len); 

    D(len/2:end,:)=D(len/2:end,:)*-1; 

    nu = 1/size(A,1); tol = 1e-5; maxIter = 100; al pha = 1.9/nu; 

    perturb = 0; normalize = 0; 

    [iter, optCond, time, w, gamma] = lsvm(A,D,nu,t ol,maxIter,alpha, ...  

        perturb,normalize); 

    % w and gamma are used to classify data points  

    res_tr=D*(A*w-gamma)>0;    % testing on training data  

    TD_FD_svmTr=[sum(res_tr) len-sum(res_tr)]; 

  

    % testing on non-training data  

    A=[te1; te2]; 

    res_te=D*(A*w-gamma)>0;    % testing on training data  

    TD_FD_svmTe=[sum(res_te) len-sum(res_te)]; 

  

    %%%%%%% 

    % ANN % 

    %%%%%%% 

    Ptr = [tr1; tr2]'; 

    len=length(tr1); 

    Tc = [ones(1,len) 2*ones(1,len)]; 

  

    T = ind2vec(Tc); 

    spread = 1; 

    net = newpnn(Ptr,T,spread); 

  

    % testing on training data  

    A = sim(net,Ptr); 

    Ac_tr = vec2ind(A); 

    TD=[sum(Ac_tr(1:len)==1)+sum(Ac_tr(len+1:end)== 2)]; 

    TD_FD_annTr=[TD 2*len-TD]; 

  

    % testing on data  

    Pte = [te1; te2]'; 

    A = sim(net,Pte); 

    Ac_te = vec2ind(A); 

    TD=[sum(Ac_te(1:len)==1)+sum(Ac_te(len+1:end)== 2)]; 
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    TD_FD_annTe=[TD 2*len-TD]; 

  

    C1(iii)=TD_FD_svmTe(1); 

    C2(iii)=TD_FD_annTe(1); 

     

    C1(iii)=C1(iii)/M*100; 

    C2(iii)=C2(iii)/M*100; 

end  

  

% figure  

% plot(difvec,C2,'ro-','linewidth',1,'MarkerSize',4 ); hold on  

% plot(difvec,C1,'bo-','linewidth',1,'MarkerSize',4 );  

% ylabel('% Correct Classification');  

% xlabel('Separation of Data');  

% title('Performance as a function of data separati on');  

% legend('PNN','LSVM')  

  

% figure  

% plot(Nvec,C2,'ro-','linewidth',1,'MarkerSize',4);  hold on  

% plot(Nvec,C1,'bo-','linewidth',1,'MarkerSize',4);   

% ylabel('% Correct Classification');  

% xlabel('Feature Vector Dimension Size (N)');  

% title('Performance as a function of feature vecto r dimension size');  

% legend('PNN','LSVM')  

  

figure 

plot(Mvec,C2, 'ro-' , 'linewidth' ,1, 'MarkerSize' ,4); hold on 

plot(Mvec,C1, 'bo-' , 'linewidth' ,1, 'MarkerSize' ,4);  

ylabel( '% Correct Classification' ); 

xlabel( 'Number of Samples (M)' ); 

title( 'Performance as a function of data sample size' ); 

legend( 'PNN' , 'LSVM' ) 

 

LSVM algorithm 

function  [iter, optCond, time, w, gamma] = 

lsvm(A,D,nu,tol,maxIter,alpha, ...  

                         perturb,normalize); 

% LSVM Langrangian Support Vector Machine algorithm  

%   LSVM solves a support vector machine problem us ing an iterative  

%   algorithm inspired by an augmented Lagrangian f ormulation.  
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% 

%   iters = lsvm(A,D)  

% 

%   where A is the data matrix, D is a diagonal mat rix of 1s and -1s  

%   indicating which class the points are in, and ' iters' is the number  

%   of iterations the algorithm used.  

% 

%   All the following additional arguments are opti onal:  

% 

%   [iters, optCond, time, w, gamma] = ...  

%     lsvm(A,D,nu,tol,maxIter,alpha,perturb,normali ze)  

% 

%   optCond is the value of the optimality conditio n at termination.  

%   time is the amount of time the algorithm took t o terminate.  

%   w is the vector of coefficients for the separat ing hyperplane.  

%   gamma is the threshold scalar for the separatin g hyperplane.  

% 

%   On the right hand side, A and D are required. I f the rest are not  

%   specified, the following defaults will be used:  

%     nu = 1/size(A,1), tol = 1e-5, maxIter = 100, alpha = 1.9/nu,  

%       perturb = 0, normalize = 0  

% 

%   perturb indicates that all the data should be p erturbed by a random  

%   amount between 0 and the value given. perturb i s recommended only  

%   for highly degenerate cases such as the exclusi ve or.  

% 

%   normalize should be set to 1 if the data should  be normalized before  

%   training.  

% 

%   The value -1 can be used for any of the entries  (except A and D) to  

%   specify that default values should be used.  

% 

%   Copyright (C) 2000 Olvi L. Mangasarian and Davi d R. Musicant.  

%   Version 1.0 Beta 1  

%   This software is free for academic and research  use only.  

%   For commercial use, contact musicant@cs.wisc.ed u.  

  

  % If D is a vector, convert it to a diagonal matrix .  

  [k,n] = size(D); 

  if  k==1 | n==1 
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    D=diag(D); 

  end ; 

  

  % Check all components of D and verify that they ar e +-1  

  checkall = diag(D)==1 | diag(D)==-1; 

  if  any(checkall==0) 

    error( 'Error in D: classes must be all 1 or -1.' ); 

  end ; 

  

  m = size(A,1); 

  

  if  ~exist( 'nu' ) | nu==-1 

    nu = 1/m; 

  end ; 

  if  ~exist( 'tol' ) | tol==-1 

    tol = 1e-5; 

  end ; 

  if  ~exist( 'maxIter' ) | maxIter==-1 

    maxIter = 100; 

  end ; 

  if  ~exist( 'alpha' ) | alpha==-1 

    alpha = 1.9/nu; 

  end ; 

  if  ~exist( 'normalize' ) | normalize==-1 

    normalize = 0; 

  end ; 

  if  ~exist( 'perturb' ) | perturb==-1 

    perturb = 0; 

  end ; 

   

  % Do a sanity check on alpha  

  if  alpha > 2/nu, 

    disp(sprintf( 'Alpha is larger than 2/nu. Algorithm may not conve rge.' )); 

  end ; 

  

  % Perturb if appropriate  

  rand( 'seed' ,22); 

  if  perturb, 

    A = A + rand(size(A))*perturb; 

  end ; 



 24 

   

  % Normalize if appropriate  

  if  normalize, 

    avg = mean(A); 

    dev = std(A); 

    if  (isempty(find(dev==0))) 

      A = (A - avg(ones(m,1),:))./dev(ones(m,1),:);  

    else  

      warning( 'Could not normalize matrix: at least one column is  

constant.' ); 

    end ; 

  end ; 

   

  % Create matrix H  

  [m,n] = size(A); 

  e = ones(m,1); 

  H = D*[A -e]; 

  iter = 0; 

  time = cputime; 

   

  % "K" is an intermediate matrix used often in SMW c alclulations  

  K = H*inv((speye(n+1)/nu+H'*H)); 

   

  % Choose initial value for x  

  x = nu*(1-K*(H'*e)); 

   

  % y is the old value for x, used to check for termi nation  

  y = x + 1; 

   

  while  iter < maxIter & norm(y-x)>tol 

    % Intermediate calculation which is used twice  

    z = (1+pl(((x/nu+H*(H'*x))-alpha*x)-1)); 

    y = x; 

    % Calculate new value of x  

    x=nu*(z-K*(H'*z)); 

    iter = iter + 1; 

  end ; 

   

  % Determine outputs  

  time = cputime - time; 
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  optCond = norm(x-y); 

  w = A'*D*x; 

  gamma = -e'*D*x; 

  disp(sprintf( 'Running time (CPU secs) = %g' ,time)); 

  disp(sprintf( 'Number of iterations = %d' ,iter)); 

  disp(sprintf( 'Training accuracy = %g' ,sum(D*(A*w-gamma)>0)/m)); 

   

  return ; 

   

function  pl = pl(x); 

  %PLUS function : max{x,0}  

  pl = (x+abs(x))/2; 

  return ; 

   

% Question2_distribution 

clear all ;close all ;clc 

  

clc; close all ; 

clear all ; 

  

dif=1.5; 

N=[5]; 

M=[2500]; 

  

ite=3; 

  

C1=zeros(1,ite); 

C2=C1; 

  

for  iii=1:ite 

  

    if  iii==1 

        [y1 y2 muY1 muY2]=gen_Random(N,M,dif, 'normal' ); 

    elseif  iii==2 

        [y1 y2 muY1 muY2]=gen_Random(N,M,dif, 'exponential' ); 

    else  

        [y1 y2 muY1 muY2]=gen_Random(N,M,dif, 'uniform' ); 

    end  
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    % half of the data is for training, rest is for tes ting  

    tr1=y1(1:M/2,:); tr2=y2(1:M/2,:); 

    te1=y1(M/2+1:end,:); te2=y2(M/2+1:end,:); 

  

    %%%%%%% 

    % SVM % 

    %%%%%%% 

  

    A=[tr1; tr2]; 

    len=length(A); 

    D=eye(len); 

    D(len/2:end,:)=D(len/2:end,:)*-1; 

    nu = 1/size(A,1); tol = 1e-5; maxIter = 100; al pha = 1.9/nu; 

    perturb = 0; normalize = 0; 

    [iter, optCond, time, w, gamma] = lsvm(A,D,nu,t ol,maxIter,alpha, ...  

        perturb,normalize); 

    % w and gamma are used to classify data points  

    res_tr=D*(A*w-gamma)>0;    % testing on training data  

    TD_FD_svmTr=[sum(res_tr) len-sum(res_tr)]; 

  

    % testing on non-training data  

    A=[te1; te2]; 

    res_te=D*(A*w-gamma)>0;    % testing on training data  

    TD_FD_svmTe=[sum(res_te) len-sum(res_te)]; 

  

    %%%%%%% 

    % ANN % 

    %%%%%%% 

    Ptr = [tr1; tr2]'; 

    len=length(tr1); 

    Tc = [ones(1,len) 2*ones(1,len)]; 

  

    T = ind2vec(Tc); 

    spread = 1; 

    net = newpnn(Ptr,T,spread); 

  

    % testing on training data  

    A = sim(net,Ptr); 

    Ac_tr = vec2ind(A); 

    TD=[sum(Ac_tr(1:len)==1)+sum(Ac_tr(len+1:end)== 2)]; 
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    TD_FD_annTr=[TD 2*len-TD]; 

  

    % testing on data  

    Pte = [te1; te2]'; 

    A = sim(net,Pte); 

    Ac_te = vec2ind(A); 

    TD=[sum(Ac_te(1:len)==1)+sum(Ac_te(len+1:end)== 2)]; 

    TD_FD_annTe=[TD 2*len-TD]; 

  

    C1(iii)=TD_FD_annTe(1); 

    C2(iii)=TD_FD_svmTe(1); 

  

    C1(iii)=C1(iii)/M*100; 

    C2(iii)=C2(iii)/M*100; 

end  

C1 

C2 

  

% figure  

% plot(difvec,C2,'rx-','linewidth',2,'MarkerSize',6 ); hold on  

% plot(difvec,C1,'go-','linewidth',2,'MarkerSize',6 );  

% ylabel('Percent Correct Classification');  

% xlabel('Separation of Data');  

% title('Performance as a function of data separati on');  

% legend('PNN','LSVM')  

  

% figure  

% plot(Nvec,C2,'rx-','linewidth',2,'MarkerSize',6);  hold on  

% plot(Nvec,C1,'go-','linewidth',2,'MarkerSize',6);  

% ylabel('Percent Correct Classification');  

% xlabel('Feature Vector Dimension Size (N)');  

% title('Performance as a function of feature vecto r dimension size');  

% legend('PNN','LSVM')  

  

% figure  

% plot(Mvec,C2,'rx-','linewidth',2,'MarkerSize',6);  hold on  

% plot(Mvec,C1,'go-','linewidth',2,'MarkerSize',6);  

% ylabel('Percent Correct Classification');  

% xlabel('Number of Samples (M)');  

% title('Performance as a function of data sample s ize');  
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% legend('PNN','LSVM')  

 

% Question 3 

% classification using PW, NN, KNN  

  

clear all ;close all ;clc 

  

difvec=0:0.1:5; 

Nvec=[1:1:40]; 

Mvec=[100:100:2500]; 

  

ite=length(difvec); 

% ite=length(Nvec);  

% ite=length(Mvec);  

  

C1=zeros(1,ite); 

C2=C1; 

C3=C1; 

hi=0.3; 

k=9; 

  

for  iii=1:ite 

  

    dif=difvec(iii); N=5; M=1000; 

    %N=Nvec(iii); dif=1.5; M=1000;  

    %M=Mvec(iii); dif=1.5; N=5;  

  

    [y1 y2 muY1 muY2 covY1 covY2]=gen_Ngaussian2(N, M,dif); 

  

    % half of the data is for training, rest is for tes ting  

    tr1=y1(1:M/2,:); tr2=y2(1:M/2,:); 

    te1=y1(M/2+1:end,:); te2=y2(M/2+1:end,:); 

  

    len=M/2; 

  

    %%%%%%%%%%%%%%%%%% 

    % Parzen Windows %  

    %%%%%%%%%%%%%%%%%% 

  

    class1=zeros(len,1); 
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    class2=class1; 

  

    for  ii=1:len 

        % for testing data from class 1  

        post1=1/((M/2)*(hi^N))*sum(GaussianWin(N,(r epmat(te1(ii,:),M/2,1)-

tr1)/hi)); 

        post2=1/((M/2)*(hi^N))*sum(GaussianWin(N,(r epmat(te1(ii,:),M/2,1)-

tr2)/hi)); 

        if  post1>post2      % p(w1|x)>p(w2|x)  

            class1(ii)=1; 

        end  

  

        % for testing data from class 2  

        post1=1/((M/2)*(hi^N))*sum(GaussianWin(N,(r epmat(te2(ii,:),M/2,1)-

tr1)/hi)); 

        post2=1/((M/2)*(hi^N))*sum(GaussianWin(N,(r epmat(te2(ii,:),M/2,1)-

tr2)/hi)); 

        if  post1<post2      % p(w1|x)<p(w2|x)  

            class2(ii)=1; 

        end  

    end  

  

    TD=sum(class1)+sum(class2); 

    FD=M-TD; 

    TD_FD=[TD FD] 

    C1(iii)=TD_FD(1)/M*100; 

  

    %%%%%%%%%%%%%%%%%%%% 

    % Nearest Neighbor %  

    %%%%%%%%%%%%%%%%%%%% 

  

    class1=zeros(M/2,1); 

    class2=class1; 

  

    for  ii=1:M/2    % for each testing data point  

  

        s=te1(ii,:); 

        d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2));   % distance from each 

point in tr1  
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        d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2));   % distance from each 

point in tr2  

  

        d1min=min(d1);   % closest point in tr1  

        d2min=min(d2);   % closest point in tr2  

  

        % if closest to a point in tr1, then classify as fr om class 1  

        % 0 means belonging to other class 1, 1 means belon ging to correct 

class  

        if  d1min<d2min 

            class1(ii)=1; 

        else  

            class1(ii)=0; 

        end  

  

        % repeat for each testing data point in class 2  

        s=te2(ii,:); 

        d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2));   % distance from each 

point in tr1  

        d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2));   % distance from each 

point in tr2  

  

        d1min=min(d1);   % closest point in tr1  

        d2min=min(d2);   % closest point in tr2  

  

        % if closest to a point in tr1, then classify as fr om class 1  

        if  d1min<d2min 

            class2(ii)=0; 

        else  

            class2(ii)=1; 

        end  

  

    end  

  

    TD=sum(class1)+sum(class2); 

    FD=M-TD; 

  

    [true_false_nn]=[TD FD] 

    C2(iii)=true_false_nn(1)/M*100; 
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    %%%%%%%%%%%%%%%%%%%%% 

    %K-Nearest Neighbor %  

    %%%%%%%%%%%%%%%%%%%%% 

    class1=zeros(M/2,1); 

    class2=class1; 

  

    for  ii=1:M/2    % for each testing data point  

  

        s=te1(ii,:); 

        d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2));   % distance from each 

point in tr1  

        d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2));   % distance from each 

point in tr2  

  

        d1=[d1 ones(M/2,1)];         % assigning 1 to denote from class 1  

        d2=[d2 -ones(M/2,1)];        % assigning -1 to denote from class 2  

        % sorting distances  

        d=[d1;d2]; 

        ds=sortrows(d);             % sortrows only sorts the first column  

  

        dsk=ds(1:k,2); 

  

        val=sum(dsk);   % positive means class1 has more contribution, neg 

means other  

        if  val>0 

            class1(ii)=1; 

        else  

            class1(ii)=0; 

        end  

  

        s=te2(ii,:); 

        d1=sqrt(sum((tr1-repmat(s,M/2,1)).^2,2));   % distance from each 

point in tr1  

        d2=sqrt(sum((tr2-repmat(s,M/2,1)).^2,2));   % distance from each 

point in tr2  

  

        d1=[d1 ones(M/2,1)];         % assigning 1 to denote from class 1  

        d2=[d2 -ones(M/2,1)];        % assigning -1 to denote from class 2  

        % sorting distances  

        d=[d1;d2]; 
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        ds=sortrows(d);             % sortrows only sorts the first column  

  

        dsk=ds(1:k,2); 

  

        val=sum(dsk);   % positive means class1 has more contribution, neg 

means other  

        if  val>0 

            class2(ii)=0; 

        else  

            class2(ii)=1; 

        end  

  

    end  

  

    TD=sum(class1)+sum(class2); 

    FD=M-TD; 

  

    [true_false_knn]=[TD FD] 

    C3(iii)=true_false_knn(1)/M*100; 

  

end  

  

figure 

plot(difvec,C1, 'ro-' , 'linewidth' ,1.5, 'MarkerSize' ,4); hold on 

plot(difvec,C2, 'go-' , 'linewidth' ,1, 'MarkerSize' ,4); 

plot(difvec,C3, 'bo-' , 'linewidth' ,1, 'MarkerSize' ,4); 

ylabel( '% Correct Classification' ); 

xlabel( 'Separation of Data' ); 

title( 'Performance as a function of data separation' ); 

legend( 'Parzen Windows' , 'Nearest Neighbor' , 'K-Nearest Neighbors' ) 

  

% figure  

% plot(Nvec,C1,'ro-','linewidth',2,'MarkerSize',5);  hold on  

% plot(Nvec,C2,'go-','linewidth',1.5,'MarkerSize',4 );  

% plot(Nvec,C3,'bo-','linewidth',1.5,'MarkerSize',4 );  

% ylabel('% Correct Classification');  

% xlabel('Feature Vector Dimension Size (N)');  

% title('Performance as a function of feature vecto r dimension size');  

% legend('Parzen Windows','Nearest Neighbor','K-Nea rest Neighbors')  
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% figure  

% plot(Mvec,C1,'ro-','linewidth',2,'MarkerSize',5);  hold on  

% plot(Mvec,C2,'go-','linewidth',1.5,'MarkerSize',4 );  

% plot(Mvec,C3,'bo-','linewidth',1.5,'MarkerSize',4 );  

% ylabel('% Correct Classification');  

% xlabel('Number of Samples (M)');  

% title('Performance as a function of data sample s ize');  

% legend('Parzen Windows','Nearest Neighbor','K-Nea rest Neighbors')  

 

% Parzen window density estimation for 1 or 2 dimensions! 

  

clear all ;close all ;clc 

  

% density estimation  

N=1;                % dimension of feature vector  

M=10000;               % number of samples for class 1 and class 2  

dif=0.6;            % difference between two means  

hi=0.2;             % defines window width  

  

[y1 y2 muY1 muY2 covY1 covY2]=gen_Ngaussian2(N,M,di f); 

  

% half of the data is for training, rest is for tes ting  

tr1=y1(1:M/2,:); tr2=y2(1:M/2,:); 

te1=y1(M/2+1:end,:); te2=y2(M/2+1:end,:); 

  

x0=-3:0.1:4;  % user defined range for density estimate  

len=length(x0); 

  

if  N==1 

    p=zeros(1,len); 

    for  ii=1:len 

        p1(ii)=1/((M/2)*(hi^N))*sum(GaussianWin(N,( repmat(x0(ii),M/2,1)-

tr1)/hi)); 

    end  

    figure 

    pgss=normpdf(x0,muY1,sqrt(covY1)); 

    subplot(2,1,1); 

    plot(x0,p1, 'r' , 'linewidth' ,2); 

    hold on 

    plot(x0,pgss, 'b' , 'linewidth' ,2); 
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    subplot(2,1,2); 

    [d c]=hist(tr1,len); 

    delta=abs(c(1)-c(2)); 

    bar(c,(d/(M/2))/delta) 

    xlim([min(x0) max(x0)]); 

  

elseif  N==2 

    p=zeros(len,len); 

    for  ii=1:len 

        for  iii=1:len 

            p1(ii,iii)=1/((M/2)*(hi^N))*sum(Gaussia nWin(N,(repmat([x0(ii) 

x0(iii)],M/2,1)-tr1)/hi)); 

        end  

    end  

    figure 

    mesh(x0,x0,p1); axis tight  

end  

 

% Parzen window density estimation for 1 or 2 dimensions! 

% examines effect of window size on density estimation 

  

clear all ;close all ;clc 

  

% density estimation  

N=1;                % dimension of feature vector  

M=5000;               % number of samples for class 1 and class 2  

dif=0.8;            % difference between two means  

  

hivec=0.005:0.01:1;             % defines window width  

lenh=length(hivec); 

  

x0=-2.5:0.1:3;  % user defined range for density estimate  

len=length(x0); 

  

p1=zeros(lenh,len); 

  

for  iii=1:lenh 

    hi=hivec(iii); 

  

    %Gaussian distribution  
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%     [y1 y2 muY1 muY2 covY1 covY2]=gen_Ngaussian2( N,M,dif);  

%     %Uniform distribution  

    y1=rand(M,N); 

    % half of the data is for training, rest is for tes ting  

    tr1=y1(1:M/2,:);  

    te1=y1(M/2+1:end,:);  

    p=zeros(1,len); 

    for  ii=1:len 

        

p1(iii,ii)=1/((M/2)*(hi^N))*sum(GaussianWin(N,(repm at(x0(ii),M/2,1)-

tr1)/hi)); 

    end  

 end  

figure 

subplot(2,1,1) 

mesh(x0,hivec,p1) 

xlabel( 'x' ); 

ylabel( 'window size' ); 

zlabel( 'p_e_s_t(x)' ); 

title( 'Density estimate of Gaussian Distributed data' ); 

axis tight  

  

% pdf=normpdf(x0,muY1,sqrt(covY1));  

pdf=unifpdf(x0,0,1); 

mse=sum((p1-repmat(pdf,lenh,1)).^2,2); 

subplot(2,1,2); 

plot(hivec,mse, 'r-' , 'linewidth' ,1.5); 

xlabel( 'window size' ); ylabel( 'MSE' ); 

title( 'MSE at given window length' ); 

 

 

 

 

 


