ECE 302 Homework 7 Due August 2, 2016

Reading assignment: chapter 9, sections 9.1 - 9.4, 9.6; chapter 10, sections 10.1 - 10.3.

- 1. A coin is flipped n times. Let the random variable $X_i = 1$ if the *i*th flip is heads and $X_i = 0$ if the *i*th flip is tails, for i = 1, 2, ..., n. Let X be the number of heads flipped in n flips. Assume all flips are fair and independent.
 - (a) What kind of random variable is X? Express X as a function of $X_1, X_2, ..., X_n$.
 - (b) Find the mean and variance of X.

Solution:

(a) X is a binomial random variable. Since $X_i = 1$ when the *i*th flip is heads, we have that

$$X = \sum_{i=1}^{n} X_i.$$

(b) Since X can be expressed as a sum of the independent random variables X_i , we have that

$$\mathbb{E}[X] = \sum_{i=1}^{n} \mathbb{E}[X_i],$$
$$\operatorname{Var}[X] = \sum_{i=1}^{n} \operatorname{Var}[X_i].$$

Each X_i is a Bernoulli random variable with $p_{X_i}(1) = p_{X_i}(0) = 1/2$, so its

mean and variance can be found as follows:

$$\mathbb{E}[X_i] = \sum_{x=0}^{1} x p_{X_i}(x)$$

$$= \frac{1}{2}$$

$$\mathbb{E}[X_i^2] = \sum_{x=0}^{1} x^2 p_{X_i}(x)$$

$$= \frac{1}{2}$$

$$\implies \operatorname{Var}[X_i] = \mathbb{E}[X_i^2] - (\mathbb{E}[X])^2 = \frac{1}{4}$$

Therefore,

$$\mathbb{E}[X] = \frac{n}{2}$$
$$\operatorname{Var}[X] = \frac{n}{4}$$

2. A random process X(t) is defined by

$$X(t) = \begin{cases} 1 & , T \le t \le T+1, \\ 0 & , \text{ else,} \end{cases}$$

where T is a uniformly distributed random variable in the interval (0,1).

- (a) Plot a few sample functions of X(t).
- (b) Find the pmf of X(t) for a fixed value of t.
- (c) Find $\mu_X(t)$ and $R_X(t_1, t_2)$. Is X(t) a wide-sense stationary random process?

Solution:

(a)

(b) Note that X(t) is a discrete random variable that takes on values 0 or 1 for any fixed t. Want to find $p_{X(t)}(0)$ and $p_{X(t)}(1)$ for all t. If $t \in [0, 2]$, then

$$p_{X(t)}(1) = \Pr(X(t) = 1)$$

= $\Pr(T \le t \text{ and } T + 1 \ge t)$
= $\begin{cases} \Pr(T \le t) &, 0 \le t < 1 \\ \Pr(T + 1 \ge t) &, 1 \le t \le 2 \end{cases}$
= $\begin{cases} t &, 0 \le t < 1 \\ 2 - t &, 1 \le t \le 2 \end{cases}$

If $t \notin [0,2]$, then $p_{X(t)}(0) = \Pr(X(t) = 0) = 1$.

Therefore,

$$p_{X(t)}(0) = \begin{cases} 1-t &, 0 \le t < 1\\ t-1 &, 1 \le t \le 2\\ 1 &, \text{else} \end{cases}$$
$$p_{X(t)}(1) = \begin{cases} t &, 0 \le t < 1\\ 2-t &, 1 \le t \le 2\\ 0 &, \text{else} \end{cases}$$

$$\mu_X(t) = \mathbb{E}[X(t)]$$

= $\sum_{x=0}^{1} x p_{X(t)}(x)$
= $p_{X(t)}(1)$
= $\begin{cases} t & , 0 \le t < 1 \\ 2 - t & , 1 \le t \le 2 \\ 0 & , \text{ else} \end{cases}$

$$R_X(t_1, t_2) = \mathbb{E}[X(t_1)X(t_2)]$$

= $\sum_{x_2=0}^{1} \sum_{x_1=0}^{1} x_1 x_2 p_{X(t_1),X(t_2)}(x_1, x_2)$
= $p_{X(t_1),X(t_2)}(1, 1)$
= $\Pr(X(t_1) = 1, X(t_2) = 1)$

In order to find $\Pr(X(t_1) = 1, X(t_2) = 1)$ need to consider several cases for t_1 and t_2 . Will find $\Pr(X(t_1) = 1, X(t_2) = 1)$ for $t_1 \leq t_2$. The case $t_1 > t_2$ is given by symmetry.

If $0 \le t_1, t_2 \le 1$, $\Pr(X(t_1) = 1, X(t_2) = 1) = \Pr(T \le t_1)$ $= t_1$ If $1 \le t_1, t_2 \le 2$, $\Pr(X(t_1) = 1, X(t_2) = 1) = \Pr(T + 1 \ge t_2)$ $= 2 - t_2$ If $0 \le t_1 \le 1 \le t_2 \le 2$ and $|t_1 - t_2| \le 1$, $\Pr(X(t_1) = 1, X(t_2) = 1) = \Pr(T \le t_1 \text{ and } T + 1 \ge t_2)$ $= t_1 - t_2 + 1$

In any other case, $Pr(X(t_1) = 1, X(t_2) = 1) = 0.$

By symmetry, we have that

$$R_X(t_1, t_2) = \begin{cases} \min(t_1, t_2) &, \ 0 \le t_1, t_2 < 1\\ 2 - \max(t_1, t_2) &, \ 1 < t_1, t_2 \le 2\\ \min(t_1, t_2) - \max(t_1, t_2) + 1 &, \ 0 \le \min(t_1, t_2) \le 1 \le \max(t_1, t_2) \le 2,\\ |t_1 - t_2| \le 1\\ 0 &, \ \text{else} \end{cases}$$

Clearly, X(t) is not wide-sense stationary.

- 3. A discrete-time random process is defined by $X(n) = A^n$, for $n \ge 0$. Assume A is a uniform random variable on the interval (0, 1).
 - (a) Plot a few sample functions of X(n).
 - (b) Find the pdf of X(n) for a fixed value of n.
 - (c) Find $\mu_X(n)$ and $R_X(n_1, n_2)$. Is X(n) a wide-sense stationary random process?

Solution:

(a)

(b) For any fixed value of $n \ge 0$, $X(n) = A^n$. The pdf of X(n) can be found using the density method.

$$f_{X(n)}(x) = f_A(a) \left| \frac{dx(n)}{da} \right|^{-1}$$
$$x(n) = a^n \implies a = (x(n))^{1/n}$$
$$\frac{dx(n)}{da} = \frac{d}{da} a^n = na^{n-1} = nx^{(n-1)/n}$$
$$\implies f_{X(n)}(x) = \frac{1}{n} x^{(1-n)/n}, x \in (0, 1)$$

$$\mu_X(n) = \mathbb{E}[X(n)]$$

$$= \mathbb{E}[A^n]$$

$$= \int_0^1 a^n da$$

$$= \frac{1}{n+1}$$

$$R_X(n_1, n_2) = \mathbb{E}[X(n_1)X(n_2)]$$

$$= \mathbb{E}[A^{n_1+n_2}]$$

$$= \int_0^1 a^{n_1+n_2} da$$

$$= \int_0^1 a^{n_1 + n_2} da$$
$$= \frac{1}{n_1 + n_2 + 1}$$

Clearly, X(n) is not wide-sense stationary.

- 4. Students arrive at a train station according to a Poisson process with an arrival rate of 1 student per 5 minutes.
 - (a) Find the probability that the first student will arrive in the first 10 minutes.
 - (b) Find the probability that the first two students will arrive in the first 10 minutes.
 - (c) Find the probability that no more than two students will arrive in the first 10 minutes.

Solution:

(a) Let the random variable T denote the time elapsed in minutes until the arrival of the first student. Then T is an exponential random variable with $\lambda = 1/5$. Want to find $\Pr(T \le 10)$.

$$Pr(T \le 10) = F_T(10)$$

= 1 - e^{-10/5}
= 1 - e^{-2}

(b) Let the random variable T_2 denote the time elapsed in minutes until the arrival of the first two students. Then T_2 is an Erlang random variable of order 2 with $\lambda = 1/5$. Want to find $\Pr(T_2 \leq 10)$.

$$Pr(T_2 \le 10) = F_{T_2}(10)$$
$$= 1 - \sum_{n=0}^{1} \frac{(\frac{10}{5})^n e^{-10/5}}{n!}$$
$$= 1 - 3e^{-2}$$

(c) Let the random variable K_{10} denote the number of students that arrive in the first 10 minutes. Then K_{10} is a Poisson random variable with $\lambda = 1/5$. Want to find $\Pr(K \leq 2)$.

$$\Pr(K_{10} \le 2) = \sum_{k=0}^{2} p_{K_{10}}(k)$$
$$= \sum_{k=0}^{2} \frac{(\frac{10}{5})^{k} e^{-10/5}}{k!}$$
$$= 5e^{-2}$$

5. The input into a filter is zero-mean white Gaussian noise X(t) with noise power density $N_0/2$ W/Hz. The filter has transfer function

$$H(f) = \frac{1}{1 + j2\pi f}$$

- (a) Find $R_X(\tau)$.
- (b) The process X(t) is sampled at two time points $t_1 \neq t_2$, yielding $X(t_1)$ and $X(t_2)$. Are $X(t_1)$ and $X(t_2)$ uncorrelated?
- (c) Let Y(t) be the output of the filter. Find $S_Y(f)$ and $R_Y(\tau)$. What is the average power of Y(t)?
- (d) Find the average power of Y(t) in the frequency range [-10, 10] Hz.

Solution:

(a) Want to find $R_X(\tau)$ given $S_X(f) = N_0/2$. We have that

$$S_X(f) = N_0/2 = \int_{-\infty}^{\infty} R_X(\tau) e^{-j2\pi f\tau} d\tau$$

We proceed by assuming $R_X(\tau) = \frac{N_0}{2}\delta(\tau)$. Can show that $S_X(f) = N_0/2$.

$$S_X(f) = \int_{-\infty}^{\infty} R_X(\tau) e^{-j2\pi f\tau} d\tau$$
$$= \int_{-\infty}^{\infty} \frac{N_0}{2} \delta(\tau) e^{-j2\pi f\tau} d\tau$$
$$= \int_{-\infty}^{\infty} \frac{N_0}{2} \delta(\tau) e^0 d\tau$$
$$= \frac{N_0}{2}$$

Therefore, $R_X(\tau) = \frac{N_0}{2}\delta(\tau)$. (b)

$$Cov[X(t_1)X(t_2)] = \mathbb{E}[X(t_1)X(t_2)] - \mathbb{E}[X(t_1)]\mathbb{E}[X(t_2)]$$
$$= R_X(t_1, t_2) - 0, \text{ since } X(t) \text{ is zero-mean}$$
$$= \frac{N_0}{2}\delta(t_2 - t_1), \text{ since } X(t) \text{ is WSS}$$
$$= 0, \text{ since } t_1 \neq t_2$$

Therefore $X(t_1)$ and $X(t_2)$ are uncorrelated when $t_1 \neq t_2$.

(c) From the notes, we have that

$$S_Y(f) = |H(f)|^2 S_X(f)$$

= $\frac{N_0/2}{|1+j2\pi f|^2}$
= $\frac{N_0/2}{1+4\pi^2 f^2}$

In order to find $R_Y(\tau)$, can use partial fractions to express $S_Y(f)$ as

$$S_Y(f) = \frac{N_0/4}{1+j2\pi f} + \frac{N_0/4}{1-j2\pi f}$$

$$\implies R_Y(\tau) = \mathcal{F}^{-1}\{S_Y(f)\} = \frac{N_0}{4}e^{-\tau}u(\tau) + \frac{N_0}{4}e^{\tau}u(-\tau), \text{ from transform tables}$$

$$= \frac{N_0}{4}e^{-|\tau|}.$$

The average power of the output is $\mathbb{E}[Y^2(t)] = R_Y(0) = \frac{N_0}{4}$ W.

(d) The average power of the output in the frequency range B = [-10, 10] Hz can be found as

$$P_B = \int_{-10}^{10} S_Y(f) df$$

= $\int_{-10}^{10} \frac{N_0/2}{1 + 4\pi^2 f^2} df$
= $\int_{-20\pi}^{20\pi} \frac{N_0/2}{2\pi (1 + u^2)} du$
= $\frac{N_0 \tan^{-1}(20\pi)}{2\pi} \approx 0.2478 N_0$