Huddle Board Exercise for Module 2 – No. 1 Monday, February 17, 2014

Draw the **AND-OR** realization and the **NAND-NAND** realization of the following function:

$$\mathbf{F}(\mathbf{X},\mathbf{Y},\mathbf{Z}) = \mathbf{X}' \bullet \mathbf{Y} \bullet \mathbf{Z} + \mathbf{X} \bullet \mathbf{Z}' + \mathbf{Y}' \bullet \mathbf{Z}$$

Draw the **OR-AND** realization and the **NOR-NOR** realization of the following function:

$$F(X,Y,Z) = (X+Y'+Z) \bullet (X'+Y) \bullet (Y+Z')$$

Huddle Board Exercise for Module 2 – No. 1a Monday, February 17, 2014

- 1. Assuming that *only true* variables are available, realize the function F(X,Y,Z) mapped below three different ways:
 - (a) Using only 7400 (quad 2-input NAND) chips
 - (b) Using only 7402 (quad 2-input NOR) chips
 - (c) Using only 7403 (quad 2-input open-drain NAND) chips

	X	('	X			
$\mathbf{Z'}$	1	d	0	1		
\mathbf{z}	1	0	0	0		
	Y'	Y		Y'		

Show complete schematics for each realization, along with your derivations.

2. Equipped only with a bucket full of 2-input NAND gates (plus a breadboard, some wires, some SPST switches, an LED, some resistors, and a power supply), you must implement the function represented by the ON SET $\sum_{X,Y,Z}(0,1,7)$ as efficiently and quickly as possible. Show all of your work, plus a complete schematic (including the switches, resistors, LED, and however many 2-input NAND gates deemed necessary).

Huddle Board Exercise for Module 2 – No. 1b Monday, February 17, 2014

Practice for standardized exam questions — determine the <u>one</u> best response.

The following K-map applies to questions 1 through 6:

	X	ζ′	X			
$\mathbf{Z'}$	1	1	0	d		
$\overline{\mathbf{z}}$	0	0	1	0		
	Y'	Y		Y'		

1.	Assuming the	availability o	f only true	input	variables,	the	fewest	number	of	2-input
	NAND gates that are needed to realize this function is:									

- (A) 6
- (B) 7
- (C) 8
- (D) 9
- (E) none of the above

2. Assuming the availability of **only true** input variables, the **fewest number of 2-input NOR gates** that are needed to realize this function is:

- (A) 6
- (B) 7
- (C) 8
- (D) 9
- (E) none of the above

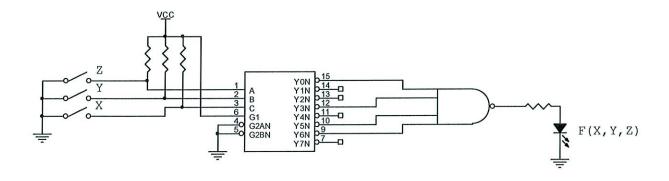
3. Assuming the availability of **only true** input variables, the **fewest number of 2-input open-drain NAND gates** that are needed to realize this function is:

- (A) 6
- (B) 7
- (C) 8
- (D) 9
- (E) none of the above

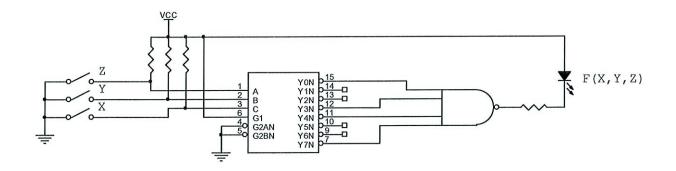
4. The **number of pull-up resistors** required for realizing this function as described in **question 3, above,** is:

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) none of the above

5. The **cost** of a **minimal sum of products** realization of this function (assuming **both true and complemented variables** are available) would be:


- (A) 9
- (B) 10
- (C) 11
- (D) 12
- (E) none of the above

6. The **cost** of a **minimal products of sum** realization of this function (assuming **both true and complemented variables** are available) would be:


- (A) 9
- (B) 10
- (C) 11
- (D) 12
- (E) none of the above

Huddle Board Exercise for Module 2 – No. 2 Wednesday, February 26, 2014

Determine the **ON** set and a simplified minimum sum-of-products function realized by this decoder-based circuit.

Determine the **ON set** and a simplified **minimum sum-of-products** function realized by this decoder-based circuit.

