ECE 301
Division 3, Fall 2007
Instructor: Mimi Boutin
Final Examination

Instructions:

1. Wait for the "BEGIN" signal before opening this booklet. In the meantime, read the instructions below and fill out the requested info.
2. When the end of the exam is announced, you must stop writing immediately. Anyone caught writing after the exam is over will get a grade of zero.
3. At the end of this document is a 5 page table of formulas and 4 pages of scratch paper. You may detach these once the exam begins. Each formula is labeled with a number. To save time, you may use these numbers to specify which formula you are using. If you use a non-trivial formula which is not contained in this table, you must explain why it is true in order to get full credit. (For example, Euler's formula and the geometric series formula are trivial; the Fourier transform of a function is not.)
4. This is a closed book exam. The only personal items allowed are pens/pencils, erasers and something to drink. Anything else is strictly forbidden.
5. You must keep your eyes on your exam at all times. Looking around is strictly forbidden.

Name: \qquad
Email: \qquad
Signature: \qquad

Itemized Scores

Problem 1:	Problem 6:
Problem 2:	Problem 7:
Problem 3:	Problem 8:
Problem 4:	Problem 9:
Problem 5:	
Total:	

(10 pts) 1. State the sampling theorem. (You may use your own words but be precise!)
(15 pts) 2. Obtain the inverse Laplace transform of

$$
X(s)=\frac{1}{s^{2}+3 s+2}, \operatorname{ROC}:-2<\operatorname{Re}(s)<-1
$$

(20 pts) 3. Define what is an LTI system by filling in the blanks and the diagrams below.

- L stands for \qquad ,
which means that Diagram 1 and Diagram 2 below produce the same output:

$$
\begin{array}{lll}
& \text { Diagram 1 } & \\
x_{1}(t) \rightarrow & & \\
& \rightarrow y(t) \\
x_{2}(t) \rightarrow & & \\
& & \\
x_{1}(t) \rightarrow & & \\
& & \\
x_{2}(t) \rightarrow & &
\end{array}
$$

- TI stands for \qquad ,
which means that Diagram 3 and Diagram 4 below produce the same output:

Diagram 3

$$
x(t) \rightarrow
$$

$$
\rightarrow y(t)
$$

Diagram 4

$$
x(t) \rightarrow
$$

$$
\rightarrow y(t)
$$

(20 pts) 4. Which of these signals cannot possibly be the response of an LTI system to the input $x[n]=(1-j)^{n}$. (No justification needed. Simply circle the signals.)

1. $y[n]=u[n]$
2. $y[n]=(1-j)^{n}$
3. $y[n]=n(1-j)^{n}$
4. $y[n]=u[n](1-j)^{n}$
5. $y[n]=j(1-j)^{n}$
6. $y[n]=1^{n}+(-j)^{n}$
7. $y[n]=(1-j)^{2 n}$
8. $y[n]=(1-2 j)^{n}$
9. $y[n]=\sqrt{2} e^{-j \frac{\pi}{4}}$
10. $y[n]=e^{-j \frac{\pi}{4}}$

You may use the space below as scratch. (This work will not be graded.)
(15 pts) 5. An LTI system has unit impulse response $h[n]=u[n-2]$. Use convolution to compute the system's response to the input $x[n]=\left(\frac{1}{2}\right)^{n+2} u[n+2]$. (Simplify your answer until all \sum signs disappear.)
(5pts) 6. Is the DT signal $x[n]=\cos (7 \pi n)$ periodic? (Answer yes/no and justify your answer.)
(5 pts) 7. The input $x(t)$ and output $y(t)$ of a system are related by the equation

$$
y(t)=x(t)+x(t-1)+x(t+1) .
$$

What is the unit impulse response of this system?
(15 pts) 8. Compute the Fourier series coefficients of the DT signal $x[n]=j^{n+2}$. (Hint: the answer can be obtained in three simple steps.)
(15 pts) 9. Using the definition of the z -transform (i.e. do not simply take the answer from the table), compute the inverse z-transform of

$$
X(z)=\frac{z}{1+\frac{1}{4} z},|z|<4 .
$$

Table

DT Signal Energy and Power

$$
\begin{align*}
E_{\infty} & =\sum_{n=-\infty}^{\infty}|x[n]|^{2} \tag{1}\\
P_{\infty} & =\lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{n=-N}^{N}|x[n]|^{2} \tag{2}
\end{align*}
$$

CT Signal Energy and Power

$$
\begin{align*}
E_{\infty} & =\int_{-\infty}^{\infty}|x(t)|^{2} d t \tag{3}\\
P_{\infty} & =\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|x(t)|^{2} d t \tag{4}
\end{align*}
$$

Fourier Series of CT Periodic Signals with period T

$$
\begin{align*}
x(t) & =\sum_{k=-\infty}^{\infty} a_{k} e^{j k\left(\frac{2 \pi}{T}\right) t} \tag{5}\\
a_{k} & =\frac{1}{T} \int_{0}^{T} x(t) e^{-j k\left(\frac{2 \pi}{T}\right) t} d t \tag{6}
\end{align*}
$$

Fourier Series of DT Periodic Signals with period N

$$
\begin{align*}
x[n] & =\sum_{k=0}^{N-1} a_{k} e^{j k\left(\frac{2 \pi}{N}\right) n} \tag{7}\\
a_{k} & =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j k\left(\frac{2 \pi}{N}\right) n} \tag{8}
\end{align*}
$$

CT Fourier Transform

$$
\begin{align*}
\text { F.T. : } \mathcal{X}(\omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t \tag{9}\\
\text { Inverse F.T.: } x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathcal{X}(\omega) e^{j \omega t} d \omega \tag{10}
\end{align*}
$$

Properties of CT Fourier Transform

Let $x(t)$ be a continuous-time signal and denote by $\mathcal{X}(\omega)$ its Fourier transform. Let $y(t)$ be another continuous-time signal and denote by $\mathcal{Y}(\omega)$ its Fourier transform.

	Signal	$F T$
Linearity:	ax(t)+by(t)	$a \mathcal{X}(\omega)+b \mathcal{Y}(\omega)$
Time Shifting:	$x\left(t-t_{0}\right)$	$e^{-j \omega t_{0}} \mathcal{X}(\omega)$
Frequency Shifting:	$e^{j \omega_{0} t} x(t)$	$\mathcal{X}\left(\omega-\omega_{0}\right)$
Time and Frequency Scaling:	$x(a t)$	$\frac{1}{\|a\|} X\left(\frac{\omega}{a}\right)$
		$\frac{1}{2 \pi} \mathcal{X}(\omega) * \mathcal{Y}(\omega)$
Multiplication:	$x(t) y(t)$	$\mathcal{X}(\omega) \mathcal{Y}(\omega)$
Convolution:	$x(t) * y(t)$	$j \omega \mathcal{X}(\omega)$

Some CT Fourier Transform Pairs

$$
\begin{array}{rll}
e^{j \omega_{0} t} & \xrightarrow{\mathcal{F}} & 2 \pi \delta\left(\omega-\omega_{0}\right) \\
1 & \xrightarrow{\mathcal{F}} & 2 \pi \delta(\omega) \\
\frac{\sin W t}{\pi t} & \xrightarrow{\mathcal{F}} & u(\omega+W)-u(\omega-W) \\
u\left(t+T_{1}\right)-u\left(t-T_{1}\right) & \xrightarrow{\mathcal{F}} & \frac{2 \sin \left(\omega T_{1}\right)}{\omega} \\
\delta(t) & \xrightarrow{\mathcal{F}} 1 \\
e^{-a t} u(t), \mathcal{R} e\{a\}>0 & \xrightarrow{\mathcal{F}} & \frac{1}{a+j \omega} \\
t e^{-a t} u(t), \mathcal{R} e\{a\}>0 & \xrightarrow{\mathcal{F}} \frac{1}{(a+j \omega)^{2}} \tag{24}
\end{array}
$$

DT Fourier Transform

Let $x[n]$ be a discrete-time signal and denote by $X(\omega)$ its Fourier transform.

$$
\begin{align*}
\text { F.T.: } \mathcal{X}(\omega) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n} \tag{25}\\
\text { Inverse F.T.: } x[n] & =\frac{1}{2 \pi} \int_{2 \pi} \mathcal{X}(\omega) e^{j \omega n} d \omega \tag{26}
\end{align*}
$$

Properties of DT Fourier Transform

Let $x(t)$ be a signal and denote by $\mathcal{X}(\omega)$ its Fourier transform. Let $y(t)$ be another signal and denote by $\mathcal{Y}(\omega)$ its Fourier transform.

	Signal	F.T.
Linearity:	ax[n] $+b y[n]$	$a \mathcal{X}(\omega)+b \mathcal{Y}(\omega)$
Time Shifting:	$x\left[n-n_{0}\right]$	$e^{-j \omega n_{0}} \mathcal{X}(\omega)$
Frequency Shifting:	$e^{j \omega_{0} n} x[n]$	$\mathcal{X}\left(\omega-\omega_{0}\right)$
Time Reversal:	$x[-n]$	$\mathcal{X}(-\omega)$
Multiplication:	$x[n] y[n]$	$\frac{1}{2 \pi} \mathcal{X}(\omega) * \mathcal{Y}(\omega)$
Convolution:	$x[n] * y[n]$	$\mathcal{X}(\omega) \mathcal{Y}(\omega)$
Differencing in Time:	$x[n]-x[n-1]$	$\left(1-e^{-j \omega}\right) \mathcal{X}(\omega)$

Some DT Fourier Transform Pairs

$$
\begin{array}{rll}
\sum_{k=0}^{N-1} a_{k} e^{j k\left(\frac{2 \pi}{N}\right) n} & \xrightarrow{\mathcal{F}} \quad 2 \pi \sum_{k=-\infty}^{\infty} a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right) \\
e^{j \omega_{0} n} & \xrightarrow{\mathcal{F}} \quad 2 \pi \sum_{l=-\infty}^{\infty} \delta\left(\omega-\omega_{0}-2 \pi l\right) \\
1 & \xrightarrow{\mathcal{F}} \quad 2 \pi \sum_{l=-\infty}^{\infty} \delta(\omega-2 \pi l) \\
\frac{\sin W n}{\pi n}, 0<W<\pi & \xrightarrow{\mathcal{F}} \quad \mathcal{X}(\omega)= \begin{cases}1, & 0 \leq|\omega|<W \\
0, & \pi \geq|\omega|>W\end{cases} \\
\delta[n] & \xrightarrow{\mathcal{F}} \quad 1 \\
u[n] & \xrightarrow{\mathcal{F}} & \frac{1}{1-e^{-j \omega}+\pi} \sum_{k=-\infty}^{\infty} \delta(\omega-2 \pi k) \\
\alpha^{n} u[n],|\alpha|<1 & \xrightarrow{\mathcal{F}} & \frac{1}{1-\alpha e^{-j \omega}} \\
(n+1) \alpha^{n} u[n],|\alpha|<1 & \xrightarrow{\mathcal{F}} & \frac{1}{\left(1-\alpha e^{-j \omega}\right)^{2}}
\end{array}
$$

Laplace Transform

$$
\begin{equation*}
X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t \tag{42}
\end{equation*}
$$

Properties of Laplace Transform

Let $x(t), x_{1}(t)$ and $x_{2}(t)$ be three CT signals and denote by $X(s), X_{1}(s)$ and $X_{2}(s)$ their respective Laplace transform. Let R be the ROC of $X(s)$, let R_{1} be the ROC of $X_{1}(z)$ and let R_{2} be the ROC of $X_{2}(s)$.

	Signal	L.T.	ROC	
Linearity:	$a x_{1}(t)+b x_{2}(t)$	$a X_{1}(s)+b X_{2}(s)$	At least $R_{1} \cap R_{2}$	(43)
Time Shifting:	$x\left(t-t_{0}\right)$	$e^{-s t_{0}} X(s)$	R	(44)
Shifting in s:	$e^{s_{0} t} x(t)$	$X\left(s-s_{0}\right)$	$R+s_{0}$	(45)
Conjugation:	$x^{*}(t)$	$X^{*}\left(s^{*}\right)$	R	(46)
Time Scaling:	$x(a t)$	$\frac{1}{\|a\|} X\left(\frac{s}{a}\right)$	$a R$	(47)
Convolution:	$x_{1}(t) * x_{2}(t)$	$X_{1}(s) X_{2}(s)$	At least $R_{1} \cap R_{2}$	(48)
Differentiation in Time:	$\frac{d}{d t} x(t)$	$s X(s)$	At least R	(49)
Differentiation in s:	$-t x(t)$	$\frac{d X(s)}{d s}$	R	(50)
Integration :	$\int_{-\infty}^{t} x(\tau) d \tau$	$\frac{1}{s} X(s)$	At least $R \cap \mathcal{R} e\{s\}>0$	(51)

Some Laplace Transform Pairs

Signal	$L T$	ROC
$\delta(t)$	1	all s
$e^{-\alpha t} u(t)$	$\frac{1}{s+\alpha}$	$\mathcal{R} e\{s\}>-\alpha$
$-e^{-\alpha t} u(-t)$	$\frac{1}{s+\alpha}$	$\mathcal{R} e\{s\}<-\alpha$

z-Transform

$$
\begin{equation*}
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \tag{55}
\end{equation*}
$$

Properties of z-Transform

Let $x[n], x_{1}[n]$ and $x_{2}[n]$ be three DT signals and denote by $X(z), X_{1}(z)$ and $X_{2}(z)$ their respective z-transform. Let R be the ROC of $X(z)$, let R_{1} be the ROC of $X_{1}(z)$ and let R_{2} be the ROC of $X_{2}(z)$.

	Signal	z-T.	ROC
Linearity:	$a x_{1}[n]+b x_{2}[n]$	$a X_{1}(z)+b X_{2}(z)$	At least $R_{1} \cap R_{2}$
Time Shifting:	$x\left[n-n_{0}\right]$	$z^{-n_{0}} X(z)$	R, but perhaps adding/deleting $z=0$
Time Shifting:	$x[-n]$	$X\left(z^{-1}\right)$	R^{-1}
Scaling in z:	$e^{j \omega_{0} n} x[n]$	$X\left(e^{-j \omega_{0}} z\right)$	R
Conjugation:	$x^{*}[n]$	$X^{*}\left(z^{*}\right)$	R
Convolution:	$x_{1}[n] * x_{2}[n]$	$X_{1}(z) X_{2}(z)$	At least $R_{1} \cap R_{2}$

Some z-Transform Pairs

Signal	LT	ROC
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$-u[-n-1]$	$\frac{1}{1-z^{-1}}$	$\|z\|<1$
$\alpha^{n} u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$\|z\|>\alpha$
$-\alpha^{n} u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$\|z\|<\alpha$
$\delta[n]$	1	all z

-SCRATCH -
(will not be graded)

