ECE 301 Division 3, Fall 2007 Instructor: Mimi Boutin Final Examination

Instructions:

- 1. Wait for the "BEGIN" signal before opening this booklet. In the meantime, read the instructions below and fill out the requested info.
- 2. When the end of the exam is announced, you must stop writing immediately. Anyone caught writing after the exam is over will get a grade of zero.
- 3. At the end of this document is a 5 page table of formulas and 4 pages of scratch paper. You may detach these **once the exam begins**. Each formula is labeled with a number. To save time, you may use these numbers to specify which formula you are using. If you use a non-trivial formula which is *not* contained in this table, you must explain why it is true in order to get full credit. (For example, Euler's formula and the geometric series formula are trivial; the Fourier transform of a function is not.)
- 4. This is a closed book exam. The only personal items allowed are pens/pencils, erasers and something to drink. Anything else is strictly forbidden.
- 5. You must keep your eyes on your exam at all times. Looking around is strictly forbidden.

Name: _____

Email:

Signature:

Itemized Scores	
Problem 1:	Problem 6:
Problem 2:	Problem 7:
Problem 3:	Problem 8:
Problem 4:	Problem 9:
Problem 5:	
Total:	

(10 pts) **1.** State the sampling theorem. (You may use your own words but be precise!)

(15 pts) **2.** Obtain the inverse Laplace transform of

$$X(s) = \frac{1}{s^2 + 3s + 2}, \text{ROC:} -2 < \text{Re}(s) < -1.$$

(20 pts) **3.** Define what is an LTI system by filling in the blanks and the diagrams below.

• L stands for _____,

which means that Diagram 1 and Diagram 2 below produce the same output:

Diagram 1 $x_1(t) \rightarrow \qquad \qquad \rightarrow y(t)$
 $x_2(t) \rightarrow$

 $\rightarrow y(t)$

 $x_2(t) \rightarrow$

 $x_1(t) \rightarrow$

• TI stands for _____,

which means that Diagram 3 and Diagram 4 below produce the same output:

Diagram 3

$$x(t) \rightarrow \qquad \qquad \rightarrow y(t)$$

Diagram 4

$$x(t) \rightarrow \qquad \qquad \rightarrow y(t)$$

(20 pts) 4. Which of these signals cannot possibly be the response of an LTI system to the input $x[n] = (1 - j)^n$. (No justification needed. Simply circle the signals.)

- 1. y[n] = u[n]
- 2. $y[n] = (1-j)^n$
- 3. $y[n] = n(1-j)^n$
- 4. $y[n] = u[n](1-j)^n$
- 5. $y[n] = j(1-j)^n$
- 6. $y[n] = 1^n + (-j)^n$
- 7. $y[n] = (1-j)^{2n}$
- 8. $y[n] = (1 2j)^n$
- 9. $y[n] = \sqrt{2}e^{-j\frac{\pi}{4}}$

10.
$$y[n] = e^{-j\frac{\pi}{4}}$$

You may use the space below as scratch. (This work will not be graded.)

(15 pts) **5.** An LTI system has unit impulse response h[n] = u[n-2]. Use convolution to compute the system's response to the input $x[n] = \left(\frac{1}{2}\right)^{n+2} u[n+2]$. (Simplify your answer until all \sum signs disappear.)

(5pts) 6. Is the DT signal $x[n] = \cos(7\pi n)$ periodic? (Answer yes/no and justify your answer.)

(5 pts) 7. The input x(t) and output y(t) of a system are related by the equation

$$y(t) = x(t) + x(t-1) + x(t+1).$$

What is the unit impulse response of this system?

(15 pts) 8. Compute the Fourier series coefficients of the DT signal $x[n] = j^{n+2}$. (Hint: the answer can be obtained in three simple steps.)

(15 pts) **9.** Using the definition of the z-transform (i.e. do not simply take the answer from the table), compute the inverse z-transform of

$$X(z) = \frac{z}{1 + \frac{1}{4}z}, |z| < 4.$$

Table

DT Signal Energy and Power

$$E_{\infty} = \sum_{n=-\infty}^{\infty} |x[n]|^2 \tag{1}$$

$$P_{\infty} = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x[n]|^2$$
(2)

CT Signal Energy and Power

$$E_{\infty} = \int_{-\infty}^{\infty} |x(t)|^2 dt$$
(3)

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$
 (4)

Fourier Series of CT Periodic Signals with period \boldsymbol{T}

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\left(\frac{2\pi}{T}\right)t}$$
(5)

$$a_k = \frac{1}{T} \int_0^T x(t) e^{-jk \left(\frac{2\pi}{T}\right)t} dt$$
(6)

Fourier Series of DT Periodic Signals with period \boldsymbol{N}

$$x[n] = \sum_{k=0}^{N-1} a_k e^{jk \left(\frac{2\pi}{N}\right)n}$$
(7)

$$a_k = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-jk \left(\frac{2\pi}{N}\right)n}$$
(8)

CT Fourier Transform

F.T.:
$$\mathcal{X}(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$
 (9)

Inverse F.T.:
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{X}(\omega) e^{j\omega t} d\omega$$
 (10)

Properties of CT Fourier Transform

Let x(t) be a continuous-time signal and denote by $\mathcal{X}(\omega)$ its Fourier transform. Let y(t) be another continuous-time signal and denote by $\mathcal{Y}(\omega)$ its Fourier transform.

	Signal	FT	
Linearity:	ax(t) + by(t)	$a\mathcal{X}(\omega) + b\mathcal{Y}(\omega)$	(11)
Time Shifting:	$x(t-t_0)$	$e^{-j\omega t_0}\mathcal{X}(\omega)$	(12)
Frequency Shifting:	$e^{j\omega_0 t}x(t)$	$\mathcal{X}(\omega-\omega_0)$	(13)
Time and Frequency Scaling:	x(at)	$\frac{1}{ a }X\left(\frac{\omega}{a}\right)$	(14)
Multiplication:	x(t)y(t)	$\frac{1}{2\pi}\mathcal{X}(\omega)*\mathcal{Y}(\omega)$	(15)
Convolution:	x(t) * y(t)	$\mathcal{X}(\omega)\mathcal{Y}(\omega)$	(16)
Differentiation in Time:	$\frac{d}{dt}x(t)$	$j\omega \mathcal{X}(\omega)$	(17)

Some CT Fourier Transform Pairs

$$e^{j\omega_0 t} \xrightarrow{\mathcal{F}} 2\pi\delta(\omega - \omega_0)$$
 (18)

$$1 \quad \stackrel{\mathcal{F}}{\longrightarrow} \quad 2\pi\delta(\omega) \tag{19}$$

$$\frac{\sin Wt}{\pi t} \xrightarrow{\mathcal{F}} u(\omega + W) - u(\omega - W) \tag{20}$$

$$u(t+T_1) - u(t-T_1) \xrightarrow{\mathcal{F}} \frac{2\sin(\omega T_1)}{\omega}$$
(21)

$$\delta(t) \quad \xrightarrow{\mathcal{F}} \quad 1 \tag{22}$$

$$e^{-at}u(t), \mathcal{R}e\{a\} > 0 \quad \xrightarrow{\mathcal{F}} \quad \frac{1}{a+j\omega}$$
 (23)

$$te^{-at}u(t), \mathcal{R}e\{a\} > 0 \quad \xrightarrow{\mathcal{F}} \quad \frac{1}{(a+j\omega)^2}$$
 (24)

DT Fourier Transform

Let x[n] be a discrete-time signal and denote by $X(\omega)$ its Fourier transform.

F.T.:
$$\mathcal{X}(\omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 (25)

Inverse F.T.:
$$x[n] = \frac{1}{2\pi} \int_{2\pi} \mathcal{X}(\omega) e^{j\omega n} d\omega$$
 (26)

Properties of DT Fourier Transform

Let x(t) be a signal and denote by $\mathcal{X}(\omega)$ its Fourier transform. Let y(t) be another signal and denote by $\mathcal{Y}(\omega)$ its Fourier transform.

$$\begin{array}{c|c} Signal & F.T. \\ \mbox{Linearity:} & ax[n] + by[n] & a\mathcal{X}(\omega) + b\mathcal{Y}(\omega) & (27) \\ \mbox{Time Shifting:} & x[n - n_0] & e^{-j\omega n_0}\mathcal{X}(\omega) & (28) \\ \mbox{Frequency Shifting:} & e^{j\omega_0 n}x[n] & \mathcal{X}(\omega - \omega_0) & (29) \\ \mbox{Time Reversal:} & x[-n] & \mathcal{X}(-\omega) & (30) \\ \mbox{Multiplication:} & x[n]y[n] & \frac{1}{2\pi}\mathcal{X}(\omega)*\mathcal{Y}(\omega) & (31) \\ \mbox{Convolution:} & x[n]*y[n] & \mathcal{X}(\omega)\mathcal{Y}(\omega) & (32) \\ \mbox{Differencing in Time:} & x[n] - x[n - 1] & (1 - e^{-j\omega})\mathcal{X}(\omega) & (33) \end{array}$$

Some DT Fourier Transform Pairs

$$\sum_{k=0}^{N-1} a_k e^{jk\left(\frac{2\pi}{N}\right)n} \xrightarrow{\mathcal{F}} 2\pi \sum_{k=-\infty}^{\infty} a_k \delta(\omega - \frac{2\pi k}{N})$$
(34)

$$e^{j\omega_0 n} \xrightarrow{\mathcal{F}} 2\pi \sum_{l=-\infty}^{\infty} \delta(\omega - \omega_0 - 2\pi l)$$
 (35)

$$1 \quad \xrightarrow{\mathcal{F}} \quad 2\pi \sum_{l=-\infty}^{\infty} \delta(\omega - 2\pi l) \tag{36}$$

$$\frac{\sin Wn}{\pi n}, 0 < W < \pi \quad \xrightarrow{\mathcal{F}} \quad \mathcal{X}(\omega) = \begin{cases} 1, & 0 \le |\omega| < W \\ 0, & \pi \ge |\omega| > W \end{cases}$$
(37)

$$\mathcal{X}(\omega)$$
 periodic with period 2π

$$\delta[n] \xrightarrow{\mathcal{F}} 1 \tag{38}$$

$$u[n] \xrightarrow{\mathcal{F}} \frac{1}{1 - e^{-j\omega}} + \pi \sum_{k = -\infty}^{\infty} \delta(\omega - 2\pi k)$$
(39)

$$\alpha^{n} u[n], |\alpha| < 1 \quad \xrightarrow{\mathcal{F}} \quad \frac{1}{1 - \alpha e^{-j\omega}} \tag{40}$$

$$(n+1)\alpha^n u[n], |\alpha| < 1 \quad \xrightarrow{\mathcal{F}} \quad \frac{1}{(1-\alpha e^{-j\omega})^2} \tag{41}$$

Laplace Transform

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$
(42)

Properties of Laplace Transform

Let x(t), $x_1(t)$ and $x_2(t)$ be three CT signals and denote by X(s), $X_1(s)$ and $X_2(s)$ their respective Laplace transform. Let R be the ROC of X(s), let R_1 be the ROC of $X_1(z)$ and let R_2 be the ROC of $X_2(s)$.

	Signal	L.T.	ROC	
Linearity:	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	At least $R_1 \cap R_2$	(43)
Time Shifting:	$x(t-t_0)$	$e^{-st_0}X(s)$	R	(44)
Shifting in s:	$e^{s_0 t} x(t)$	$X(s-s_0)$	$R + s_0$	(45)
Conjugation:	$x^*(t)$	$X^*(s^*)$	R	(46)
Time Scaling:	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	aR	(47)
Convolution:	$x_1(t) * x_2(t)$	$X_1(s)X_2(s)$	At least $R_1 \cap R_2$	(48)
Differentiation in Time:	$\frac{d}{dt}x(t)$	sX(s)	At least R	(49)
Differentiation in s:	-tx(t)	$\frac{dX(s)}{ds}$	R	(50)
Integration :	$\int_{-\infty}^t x(\tau) d\tau$	$\frac{1}{s}X(s)$	At least $R \cap \mathcal{R}e\{s\} > 0$	(51)

Some Laplace Transform Pairs

Signal	LT	ROC	
$\delta(t)$	1	all s	(52)
$e^{-\alpha t}u(t)$	$\frac{1}{s+\alpha}$	$\mathcal{R}e\{s\} > -\alpha$	(53)
$-e^{-\alpha t}u(-t)$	$\frac{1}{s+\alpha}$	$\mathcal{R}e\{s\} < -\alpha$	(54)

z-Transform

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
(55)

Properties of z-Transform

Let x[n], $x_1[n]$ and $x_2[n]$ be three DT signals and denote by X(z), $X_1(z)$ and $X_2(z)$ their respective z-transform. Let R be the ROC of X(z), let R_1 be the ROC of $X_1(z)$ and let R_2 be the ROC of $X_2(z)$.

	Signal	z-T.	ROC	
Linearity:	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	At least $R_1 \cap R_2$	(56)
Time Shifting:	$x[n-n_0]$	$z^{-n_0}X(z)$	R, but perhaps adding/deleting $z=0$	(57)
Time Shifting:	x[-n]	$X(z^{-1})$	R^{-1}	(58)
Scaling in z:	$e^{j\omega_0 n}x[n]$	$X(e^{-j\omega_0}z)$	R	(59)
Conjugation:	$x^*[n]$	$X^*(z^*)$	R	(60)
Convolution:	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least $R_1 \cap R_2$	(61)

Some z-Transform Pairs

Signal
 LT
 ROC

$$u[n]$$
 $\frac{1}{1-z^{-1}}$
 $|z| > 1$
 (62)

 $-u[-n-1]$
 $\frac{1}{1-z^{-1}}$
 $|z| < 1$
 (63)

 $\alpha^n u[n]$
 $\frac{1}{1-\alpha z^{-1}}$
 $|z| > \alpha$
 (64)

 $-\alpha^n u[-n-1]$
 $\frac{1}{1-\alpha z^{-1}}$
 $|z| < \alpha$
 (65)

 $\delta[n]$
 1
 all z
 (66)