3 April 2008

Homework 2

EE662 - Pattern Recognition

Deen King-Smith
dkingsmi@purdue.edu

Question 1: In the Parametric Method section of the course, we learned how to draw a separation
hyperplane between two classes by obtaining wo, the argmax of the cost function J(w)=w'Sgw /
w'S,,w. The solution was found to be wo= Sw'l(ml-mz), where m; and m; are the sample means of
each class, respectively.

Some students raised the question: can one simply use J(w)= w'Sgw instead (i.e. setting Sy as
the identity matrix in the solution w,? Investigate this question by numerical experimentation.

Using matlab, two sets of data of random data were generated based on were generated to compare
the use of both cost functions.

The data used is plotted below:

5
*
4l * . .
- * %y %
Pk kg ﬁﬂﬁi *
| FF e 4
3 *% * * o4 K
* K *T K
4, AR RARFE 4 o4
DR 4 S *
B + ¥ o i
2 * * * % He ¥ T TH
*r ok el I
T U
RO e >
L **}%&* * 9?%6 4@% i
4 FF L %
Or * **ﬂ j': ﬁ&* ¥ %Qﬁﬁ% * o+ B
PO B
Al % x ¥ R Zﬁ*ﬁ * " |
* % gt o+ * *
* % O
20 * i
3k N i
_4 | | | | | | | |
-4 -3 -2 -1 1 2 3 4 5
Figure 1

Above, data set 1 is in blue and data set 2 is in red.

The solution to the cost function J(w)=w'Sgw / w'S,w, is wo= S,,*(m;-m5). To compare the two we take
both values of wyand project them onto the data sets above.

Using S,, calculated normally:

0.03

0.02 -
0.01+
0
-0.01+ B

-0.02

-0.03

-0.04

-0.05

-0.06 : :
0 50 100 150

Figure 2

Using the identity matrix for S,,.

10

|
0 50 100 150

Figure 3

The waveforms generated by both projections look nearly identical, the difference being in the scale of

the projection. The original method provides the equivalent normalized of wywhere as the version
proposed in class is not.

Question 2: Obtain a set of training data. Divide the training data into two sets. Use the first set as
training data and the second set as test data.

a) Experiment with designing a classifier using the neural network approach.

b) Experiment with designing a classifier using the support vector machine approach.

c) Compare the two approaches.

Note: you may use code downloaded from the web, but if you do so, please be sure to explain what the
code does in your report and give the reference.

Neural Networks:

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way
biological nervous systems, such as the brain, process information. The key element of this paradigm is
the novel structure of the information processing system. It is composed of a large number of highly
interconnected processing elements working in unison to solve specific problems. ANNs, like people,

learn by example. An ANN is configured for a specific application, such as pattern recognition or data
classification, through a learning process. Learning in biological systems involves adjustments to the
synaptic connections that exist between the elements. This is true of ANNs as well. In most cases an
ANN is an adaptive system that changes its structure based on external or internal information that
flows through the network during the learning phase. The elements that receive input from outside the
network is called the input layer. The output layer consists of elements that contain prediction and/or
classification information. All other elements are contained in the hidden layer.

In our design the input elements are scaled between 0 -1 or-1-1. When the values leave the input
layer they move through the hidden layer. When each value traverses a between element layers,
weights are assigned to each interconnecting line and is multiplied by the values. The values are
summed, modified by the transfer function, and generally passed directly to all elements in the next
layer with a weight assigned to each value. Values of the interconnecting weights predetermine the
neural network's computation reaction to any arbitrary input pattern. As information is passed forward
from the inputs toward the outputs, a back-propagation algorithm adjusts interconnecting weights
during the learning phase so that known outputs will best match predicted outputs.

In order to adjust the weights based on the training patterns and matching the known outputs to the
predicted outputs, each epoch changes the weight by an amount proportional to the different between

the desired output and actual output according to Aw = n(out, —tar)x;

Where out is the target output, out is the actual output, and 7 is the learning rate.

Multilayer Percepiron

input layer hidden layer uullpl.{l Iayer% :
d fealures LGRS, oD 108
D

bias unit

Figure 4

In our design we 1D samples with N(2,2) and N(-2,2) distributions for our experiments. The samples
generated are divided into two with half used for testing and the other training. The training error is
used to show the performance of the classifier. The input parameters are N1, N2, and N3 which are the
number of nodes in the input, hidden, and output layer respectively.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

NS
! ! \v \/\\/\/\/\\/\/\\/\/\/\\/\/Y\/\/

10 15 20 25 30 35 40 45 50

Figure 5 - N1=6, N2=12, N3=3

0.9 |

0.6 |

Figure 6 — N1=6, N2=18, N3=3

0.9+ i
0.8 R
0.7 -
0.6 i

0.5+ R

0.2+ .
0.1+ , \M/\/ |
\/
N\
0 ! ! ! ! VV\VV\VVYV\/\V\/\/VV
0 5 10 15 20 25 30 35 40 45 50

Figure 7 —N1=3, N2=12, N3=6

In each of the above figures the Y-axis is the error from the training data and X-axis is the number of
epochs.

Support Vector Machines

Using the SVM approach, we view the input data as a two sets of vectors in an N-dimensional space, and
then leverage the SVM to construct a hyperplane that maximizes the margin between the sets of data.
The Hyper-plane based on this margin is known as the Maximum-Margin Hyperplane. To accomplish
this we map the binary set of training data to a feature space with a high dimension. Mathematically
this can be expressed as the following:

- We want to maximize

n l n n
L(a) - Z “ E Z Z aka}zkzjk(yj » Vi)
k=1

k=1 j=1
Within the constraints

n
Yz, =0 20, k=1,.....n
P

)

- From the above we are able to define the kernel function as

k(y,.v) =y, v =d(x) - d(x;)

To implement this in code we use Quadratic programming. This special type of mathematical
optimization allows us to compute a global minimize if there exist at least one vector satisfying the
above constraints and that L(a) is bounded on the feasible region.

For out design we use data similar to Neural Networks except we use the N(1,2) and N(-1,2) for each
respective classes.

250

200 - 8

150 - 8

100 8

0 1 1 1 1 1
0 2 4 6 8 10 12

Figure 8 - # of Support Vectors

120

100 ¢

80+

O I I I I I
0 2 4 6 8 10 12

Figure 9 - # Of Misclassifications

The above figures show the number of support vector and respective misclassifications generated by the
designed SVM classifier.

Comparing the two methods we see that SVM are closely related to Neural Networks. A significant
advantage of SVMs is that Neural Networks can suffer from multiple local minima, where the solution to
an SVM is global and unique. Two more advantages of SVMs are that they have a simple geometric
interpretation and give a sparse solution. Unlike Neural Networks, the computational complexity of
SVMs does not depend on the dimensionality of the input space. Neural network use empirical risk
minimization, where SVMs use structural risk minimization. The reason that SVMs often outperform
Neural Networks in practice due to the fact that they deal with overfitting which is the biggest problem
with Neural Networks.

Question 3: Using the same data as for question 2 (perhaps projected to one or two dimensions
for better visualization),

a) Design a classifier using the Parzen window technique.
b) Design a classifier using the K-nearest neighbor technique
c) Design a classifier using the nearest neighbor technique.

d) Compare the three approaches

To lllustrate the difference between the these techniques we start with the Nearest and K-nearest
neighbor techniques

K-Nearest Neighbor, and Nearest Neighbor

The Nearest Neighbor techniques are methods for classifying data based on the closest training
examples in the feature space. The purpose of this algorithm is to classify a new object based on
attributes and training samples. The classifier does not use any model to fit and only based on memory.
Given a query point, we find K number of objects or training points closest to the query point. The
classification is using majority vote among the classification of the K objects. Any ties can be broken at
random. K Nearest neighbor algorithm uses neighborhood classification as the prediction value of the
new query instance.

Example of KNMN (kK=5)

"ll T T T T T T
T
L o Ho5 o
3 " # lnknown Point
+® —== [istance
» —
2+ a®* . il
» #
i '.‘ .‘
TF /k\ w
|:| L =
Ak o
i o
_3 1 1 1 1 1 1
-2 -1] 1 2 3 4 5

Figure 10 — An example of KNN

In the figure above the unknown data point is classified into class 1 or class 2, using KNN with K=5. In
this case the 5 nearest neighbors are used for voting. Euclidean distance is used for the metric and due
to the existence of more samples from Class 1 than Class 2, the point is classified as Class 1. During kNN,
the volume is centered on the unknown point and grows until it captures k samples for classifications.

Nearest Neighbor is a special case of K-Nearest Neighbor. In NN k is set to 1 and unknown data will be
classified in the class that it’s nearest neighbor is in.

In our design we 1D samples with N(2,2) and N(-2,2) distributions for our experiments. The samples
generated are divided into two with half used for testing and the other training. The total number of

samples point = 200 and the number of neighbors = 5.

0.7
0.6
05" |
0.4 |
0.3
0.2

0.1

rows o
s000o00 000"

0
-5 0 5

Figure 11 — kNN

In the figure above, we plot the probabilities of Class 1(red) and Class 2(blue) verses an unknown point

Xo.

Figure 12 — NN

10

As with figure 11, we show the probabilities of Class 1 and Class 2 versus the unknown point Xo.

k;/n
Classification is based on the P(X |W;),i=1, 2 where p,(X|w;) = 'T . The respective P(X |w;) ‘s

are compared and the class with larger probability is chosen for the class of Xo.

When we compare kNN and NN the difference lies in the Error rate. kNN has the advantage here in that

it is more robust to handle noise in the training data. This is because K points are used instead of 1, as is

the case in NN. While this may be advantageous, there are drawbacks when using large values for K.

This value of K depends on the data being used. For Normal distributions, it depends on the dimension

of the data.

K=1

K=3

K=5

K=7

Error Rate

0.35

0.29

0.25

0.24

Experiments show that as K get larger in normally distributed data the error also gets larger. The

optimal value for K is found to be k, = ,/n _training

Parzen Windows

Parzen windows classification is a technique for nonparametric density estimation, which can
also be used for classification. Using a given kernel function, the technique approximates a
given training set distribution via a linear combination of kernels centered on the observed
points. In this work, we separately approximate densities for each of the two classes, and we
assign a test point to the class with maximal posterior probability.

The resulting algorithm is extremely simple and closely related to support vector machines. The
decision function is

HX) = sign(> wK (X, X},

where the kernel function K is the radial basis function of:

—|X - Y|P
2o ’

K(X.Y} = ﬂf:n(

The Parzen windows classification algorithm does not require any training phase; however, the
lack of sparseness makes the test phase quite slow. Furthermore, although asymptotical
convergence guarantees on the performance of Parzen windows classifiers exist, no such
guarantees exist for finite sample sizes.

Farzen Window in 2D

X, :}{\.\

\ X

s

same 1 for any x,

Figure 13

Figure 13 shows the unknown data point is classified into either Class 1 or Class 2. If the density
of samples is high near x, the cell will capture more samples and conversely if the density if low
the cell will capture less samples.

In order to estimate density we need a window function ¢(Vv). The estimated density is:

1&-1 (X=X
pn(X)—Hév—n(ﬁh—

n

Examples of a window functions are Gaussian, Unit, and Triangle functions. For our purposes the

density is:

_Kk/N

p(x) v
Where x is the sample inside some region R, K is the volume of the samples, N is the total
number of samples, and V is the volume of R.

When choosing the window size h, we are making a guess the region where density is
approximately constant. The smaller h is there exist n sharp pulses centered on the data.
These are super imposed so that the result will be noisy and not smooth. Conversely is h is too
large, the result will lack detail and will be over smoothed.

Figure 14 —Small h Figure 15 — Large h

For our experiment we used N(1,sqrt(2)) and N(-1, sqrt(2)) for our samples, along with
different windows sizes, number of samples. This is to show their effect on estimation. The
results from the experiments are shown below.

07

08

06

04

03

02

03

03

02

02

015

n=1000andht =0

T T T T T
—class]
clags 2|
| \J\ | X\N Y - |
6 4 2 0 2 4 3 B
n=1000andhi =5
T T T T T
—lass

class 2 |
1 A L
i 4 2 0 2 4 8

Figure 16: Number of samples used = 1000 and window size =0.1,1, 5, 10

035

03

025

02

035

03

025

02

n=1000andht =1

n=1000andhf =10

—class 1
—class2

n=10000andh =0 n=10000andht =1

07 T T T T 095 T T T T T T
—class 1 —class 1

06l —class2 || 0al —class2 ||
Opp G 025 R
D4r B 02r 1
03r 1 0161 k
nar 4 01r R
01 7 D05 1

0 | | | | 0 | | | | | ol |

B i 4 2 0 2 4 g B 3 il 4 2 0 2 4 8 B

n=10000andhl =5 n=10000andh1 =10
035 T T T T 095 T T T T T T
—class 1 —class 1

03k —class2 | 03k —class2 |
£RR5 4 025 1
Dar 4 02r 1
015 F Hibng k
01 # 01r R
005 b D06 1

O | L | | | 0 1 1 L | | |

B il 4 2 0 2 4 g B 3] 4 2 0 2 4 B B

Figure 17: Number of samples used = 10000 and window size =0.1,1, 5, 10

We can see clearly from the results that if the window size is too large, the figure looses much
of it’s details.

Parzen windows can be regarded as a generalization of k-nearest neighbor techniques. Rather
than choosing the k nearest neighbors of a test point and labelling the test point with the
weighted majority of its neighbors' votes, one can consider all points in the voting scheme and
assign their weight by means of the kernel function. With Gaussian kernels, the weight
decreases exponentially with the square of the distance, so far away points are practically
irrelevant.

Both Parzen and kNN methods can generate very complex decision boundaries. The main
difference is that instead of looking at the k closest points to a piece of training data, all points
within a fixed distance are considered. In practice, one difference is that datasets with large
gaps get treated much different. kNN will pick far away points, but it is possible that relatively
small Parzen Windows will actually enclose zero points. In this case, only the priors can be used
to classify.

Code:

Problem 1:
% Hw 2 pl Parametric Method

clear all
close all

% sample points

n1=150;

n2=150;

% 1-dim

mean_x1 = 2;

var_x1=4;

mean_x2 = 0;

var_x2=1;

x1 =mean_x1 + sqrt(var_x1)*randn(1,nl);
X2 = mean_x2 + sqrt(var_x2)*randn(1,n2);
% 2-dim

Meanl=[00]";

Mean2 =[2 2]

stdl1=[10;01];

std2=[10;01];

data_class1 = mvnrnd(Mean1,std1,n1);
data_class2 = mvnrnd(Mean2,std2,n2);
plot(data_class1(:,1),data_class1(:,2),'b*');hold on;
plot(data_class2(:,1),data_class2(:,2),'r*");
x1=data_classi;

x2=data_class2;

figure(2),
mhu_1=(1/n1)*(sum(x1));
mhu_2=(1/n2)*(sum(x2));

bet_scatter= (mhu_1-mhu_2);

% S_B =eye(f,c);

S_W1 =size(x1,1)*cov(x1);
S_W2 =size(x2,1)*cov(x2);
S W=S WI1+S_W2;
[f,c]=size(S_W);

w_opt=S_W\bet_scatter’;

S_W_I=eye(f,c); % try with Sw set to ident matrix
w_opt_I=S_W_I\bet_scatter’;

% Projections
vyl =x1*w_opt;
y2 = x2*w_opt;

bin=0.1;

x =-25:bin:25;

xa = l:length(y1);

xb = 1:length(y2);
plot(xa,y1,'b',xb,y2,'r");
%plot(y1,'k');hold on;
%plot(y2,'g');hold off;

figure(3),

% Projections
vyl I=x1*w_opt_I;
y2_|=x2*w_opt_I;

bin=0.1;

X =-25:bin:25;

xa= 1:length(y1_l);
xb=1:length(y2_l);
plot(xa,yl_l,'b',xb,y2_I,'r");

Problem 2a

% performs backpropagation algorithm

close all;

clear all;

%rand('state’,100);

% the neurons have a sigmoid function activation
% data length

N1 =3;
N2 =12,
N3 =6;

% length training set
% iter = epochs

iter = 50;

iter_test = 50;
Target = zeros(1,N3);

% initialize weights

W_hid_in =rand(1,N1);
W_hid_out = rand(1,N2);
error_epoch = zeros(1,iter);
error_epoch_test = zeros(1,iter_test);
Meanl = 2;
Mean2 =-2;
stdl = 2;
std2 = 2;
data_classl = Meanl + std1*randn(1,N1);
data_class2 = Mean2 + std2*randn(1,N1);
for k=1:iter
if (mod(k,2)==0)
training_data = data_class1;
else
training_data = data_class2;
epoch=k,
end
fori=1:N1
sig_output(i) = training_datal(i);
end
% training the neural network step
% outputs
for n=1:N3
in_last(n)=0;
for j=1:N2
input_hid(j)=0;
fori=1:N1
input_hid(j) = input_hid(j)+W_hid_in(i)*sig_output(i);

end

W _old_hidden(:,j) = W_hid_in";
sig_output_hid(j) = (1)/(1+exp(-input_hid(j)));
in_last(n) = sig_output_hid(j)*W_hid_out(j)+in_last(n);
end
out(n) = (1)/(1+exp(-in_last(n)));

W_old_output(:,n) = W_hid_out";
end

lear_rate = 0.25;

% backpropagation step

% calculate errors of output neurons
fori=1:N3
delta(i) = out(i)*(1-out(i))*(Target(i)-out(i));
end
% Change output layer weights
fori=1:N2
for j=1:N3
W_new_output(i,j) = W_old_output(i,j)+lear_rate*delta(j)*sig_output_hid(i);
end
end
% back-propagate
for i=1:N2
ssuumm=0;
for j=1:N3
ssuumm = delta(j)*W_new_output(i,j)+ssuumm;
end
delta_hid(i) = sig_output_hid(i)*(1-sig_output_hid(i))*ssuumm;
end

% change hidden layer weights
fori=1:N1
for j=1:N2
W_new_hidden(i,j) = W_old_hidden(i,j)+lear_rate*delta_hid(j)*training_data(i);
end
end

W_old_output = W_new_output;
W_old_hidden = W_new_hidden;

% forward pass with the new weights
fori=1:N1

sig_output(i) = training_data(i);
end
% outputs
for n=1:N3

in_last(n) = 0;

W_hid_out = W_new_output(:,n)’;
for j=1:N2

input_hid(j) = 0;

W_hid_in = W_new_hidden(:,j)’;

fori=1:N1
input_hid(j) = input_hid(j)+W_hid_in(i)*sig_output(i);
end
sig_output_hid(j) = (1)/(1+exp(-input_hid(j)));
in_last(n) = sig_output_hid(j)*W_hid_out(j)+in_last(n);
end
output(n,k) = (1)/(1+exp(-in_last(n)));
error(k) = abs(Target(n)-output(n,k));
end
error_epoch(k) = (error_epoch(k)+error(k))/k;
end
x=1:iter;
plot(x,error_epoch,'k'); hold on;
y=zeros(1,iter_test);

%% Testing...
for k=1:iter_test
data_classl = Mean1 + std1*randn(1,N1);
data_class2 = Mean2 + std2*randn(1,N1);
% Generating the test data
p=randperm(2);
if (p(1)==1)
training_data = data_classl;
else
training_data = data_classl;
end
epoch=k,
fori=1:N1
sig_output(i) = training_datal(i);
end
% outputs

for n=1:N3
in_last(n) = 0;
for j=1:N2
input_hid(j) = 0;
fori=1:N1
input_hid(j) = input_hid(j)+W_hid_in(i)*sig_output(i);
end
sig_output_hid(j) = (1)/(1+exp(-input_hid(j)));
in_last(n) = sig_output_hid(j)*W_hid_out(j)+in_last(n);
end
outpu_test(n,k) = (1)/(1+exp(-in_last(n)));
error_test(k) = abs(Target(n)-outpu_test(n,k));
end
error_epoch_test(k) = (error_epoch_test(k)+error_test(k))/k;
y(k)=(y(k)+1)/k
end
x=1:iter_test;
%plot(x,y,'b'); hold on;
plot(x,error_epoch_test,'y'); hold off;
W_hid_in,
W_hid_out,

Problem 2b

clear; % clear variables from memory

close all;

nsample = 100;

X = zeros(nsample,1);

Y = zeros(nsample,1);

Meanl = 0;

Mean2 =-1;

std1 =2;

std2 = 2;

data_class1 = Mean1 + std1*randn(1,nsample/2);
data_class2 = Mean2 + std2*randn(1,nsample/2);
X(1:nsample/2) = data_class1;
X(nsample/2+1:nsample) = data_class2;

X = sort(X);

plot(data_class1,'ko');hold on;
plot(data_class2,'g+');

p = randperm(nsample);

Y(p(1:nsample/2)) = -1;

Y(p(nsample/2+1:nsample)) = 1;

% the trade-off weights we want to investigate , 2000, 5000, 10000, 100000
c=[0.1, 1,5, 10, 20, 50, 100, 200, 500, 1000];

Margin =[]; % margin; initialized as null
nSV=[]; % number of support vector;
nMis=[]; % number of misclassification;
Err=[]; % training errors;
XY,
for n =1 : max(size(C)),
% construct Hessian matrix; Hessian matrix is the Q matrix in our slides; also called Kernel
matrix
H = zeros(nsample, nsample); % initialize H; set H to a nsample * nsample zero matrix
fori=1:nsample,
forj=1:nsample,
H(i,j) = X()*XG)*Y()*Y(); % 1! please write your answer here !!!
end
end
H = H+1le-10*eye(size(H)); % add 1le-10 to the main diagonal of H; a trick to make H stable
F = -ones(nsample,1); % F' * Alpha corresponds to sigma_i(Alpha_i) in object function
% set up equality constraints
A=Y'; % corresponds tosigma_i(Alpha_i*Y_i)=0
b=0;

% set up upper and lower bounds for alpha: LB <= Alpha <= UB
UB = zeros(nsample,1);

LB = C(n)*ones(nsample,1);

% starting point of alpha
Alpha0 = zeros(nsample, 1);

% optimizing alpha with quadratic programming

[Alpha] = quadprog(H, F, [], [], A, b, LB, UB, Alpha0),

% Alpha = gp(H, F, A, b, LB, UB, Alpha0, 1);

% tolerance for support vector detection; we will ignore the alphas less than tol
tol = 0.0001;

% calculate weight

w=0;
fori=1:nsample,

w =w + Alpha(i) * Y(i) * X(i);
end

% calculate bias
bias = 0;
bl=0;
b2 =0;
fori=1:nsample,
if (Alpha(i) > tol & Alpha(i) < C(n) - tol),
bl =">bl+X(i) * w-Y(i);

b2=b2-1,;
end
end
if b2 ~=0,
bias=b1l/ b2;
else % unlikely
bl =0;

fori=1:nsample,
if Alpha(i) < tol,
bl =b1+X(i) * w- Y(i);
b2=b2-1;
end
end

if b2 ~=0,
bias = b1 / b2;
else % even unlikelier
bl=0;
fori=1:nsample,
bl=">bl1+X(i)*w-Y(i);
b2=b2-1;
end
if b2 ~=0,
bias = b1/ b2;
end
end
end

% margin=2/||w]||
Margin = [Margin, 2 / abs(w)]; % the operation A = [A, v] appends v to matrix A

% number of support vectors
nSV = [nSV, size(find(Alpha > tol), 1)];

% calculate # of misclassification and training error
m =0;
e=0;
fori=1:nsample,
predict =w * X(i) + bias; %Y=w*X+b
if predict>=0 & Y(i) <0,

m=m+1,;
end
if predict<0 & Y(i) >=0,
m=m+1,;
end
if Alpha(i) > tol, % consider support vectors only; why?
e=e+1-predict * Y(i);
end
end

nMis = [nMis, m],
Err = [Err, €],
end

% plot C_margin, C_trainingerror, C_misclassification, C_nsupportvector
% please use your code to make better plots instead of ours

Z = zeros(size(C));

fori=1:size(C, 2)
(i) =1i;

end

figure

plot(Z, Margin);
title('Margin');
xlabel('C(i)");

figure

plot(Z, Err);
title('Training Error');
xlabel('C(i)");

figure
plot(Z, nMis);
title('# of Misclassification');

xlabel('C(i)");

figure

plot(Z, nSV);

title('# of Support Vector');
xlabel('C(i)");

Problem 3a,b

% Nearest Neighbor
clear all
close all

% sample data

n = 200;
train_data = n/2;
test_data =n/2;

% Data set 1:

mean_x1 = 2;

var_x1=2;

x1 =mean_x1 + sqrt(var_x1)*randn(1,n);
x1_train = x1(1:train_data);

x1_test = x1(train_data+1:end);

% Data set 2:

mean_x2 =-2;

var_x2 =2;

X2 = mean_x2 + sqrt(var_x2)*randn(1,n);
X2_train = x2(1:train_data);

x2_test = x2(train_data+1:end);

% function of kn (KNN)

%kn = ceil(sqrt(train_data));
% function of kn (NN)
kn=1;

x =-5:0.2:10;

L_x = length(x);
pl_nn =zeros(1,L_x);
p2_nn = zeros(1,L_x);

fori=1:L x
index_sort1 = sort(abs(x1_train - x(i)));
V1 =2 *index_sortl(kn);
index_sort2 = sort(abs(x2_train - x(i)));
V2 =2 * index_sort2(kn);

if (V1>0)
pl_nn(i) = kn/train_data/V1;
end
if(V2 > 0)
p2_nn(i) = kn/train_data/V2;
end
if (p1_nn(i)>10)
pl_nn(i)=0;
end
if (p2_nn(i)>10)
p2_nn(i)=0;
end
end
figure

plot(x,p1_nn,'r.-,x,p2_nn,'b.-")

% Classification

error_nn_total = 0;
errorl = 0;
error2 = 0;

fori=1:test_data
j1_nn = find(abs(x-x1_test(i)) <=0.1);

if (p1_nn(j1_nn) < p2_nn(j1_nn))
errorl = errorl +1;
end

j2_nn = find (abs(x-x2_test(i))<=0.1);

if(p2_nn(j2_nn) < p1_nn(j2_nn))
error2 = error2 +1;
end
end
error_nn_total = (errorl + error2)/2/test_data

Problem 3c

clear all
close all

n = 500;
train_data = n/2;
test_data =n/2;

% Data set 1: x1 with distribution N(a,b) (mean=a, var=b)
mean_x1=1;

var_x1=2;

x1 = mean_x1 + sqrt(var_x1)*randn(1,n);

x1_train = x1(1:train_data);

x1_test = x1(train_data+1:end);

% Data set 2: x2 with distribution N(a,b) (mean=a, var=b)
mean_x2 =-1;

var_x2 =2;

X2 = mean_x2 + sqrt(var_x2)*randn(1,n);

x2_train = x2(1:train_data);

x2_test = x2(train_data+1:end);

% 1st estimation by Parzen window

d =1; % dimention
x =-5:0.2:10;

L_x = length(x);
%setting hl

hl=1;
hn = h1/sqrt(train_data);
Vn = hn\d;

Q1 = zeros(1,train_data);
probl_train = zeros(1,L_x);

Q2 = zeros(1,train_data);
prob2_train = zeros(1,L_x);

fori=1:L_x

forj=1:train_data
Q1(j) = 1/(sart(2*pi))*exp(-(x(i) - x1_train(j))*2/(2*hn"2));
Q2(j) = 1/(sart(2*pi))*exp(-(x(i) - x2_train(j))*2/(2*hn"2));
probl_train(i) = prob1_train(i) + 1/train_data*1/Vn*Q1(j);
prob2_train(i) = prob2_train(i) + 1/train_data*1/Vn*Q2(j);
end
end

figure
plot(x,prob1_train,'k.-', x,prob2_train,'g.-")

% 2nd step classification and errors by Parzen window method
errorl =0;
error2 = 0;

fori=1:test data
parzen = find(abs(x-x1_test(i)) <= 0.1);
if (probl_train(parzen) < prob2_train(parzen))
errorl =errorl + 1;
end
parzen2 = find(abs(x-x2_test(i)) <= 0.1);
if(prob2_train(parzen2) < probl_train(parzen2))
error2 = error2 + 1;
end
end

error_total = errorl + error2
error_parzen_prob = error_total/(2*test_data)

