1. Let $f \in C[0,1]$ and suppose $\int_{0}^{1} x^{n} f=0$ for every $n=0,1,2, \ldots$. Show $f=0$.
2. Recall that the polynomials from \mathbb{R} to \mathbb{R} separate points and are nowhere vanishing; consequently, given $x_{1} \neq x_{2}$, and y_{1}, y_{2} there is a polynomial, say $p(x)$ such that $p\left(x_{j}\right)=y_{j}$. Show this is true for distinct x_{1}, \ldots, x_{n} and arbitrary y_{1}, \ldots, y_{n}.
3. Let K be compact in \mathbb{R} and show $C(K)$ is separable. (Recall, $C(K)$ is a normed linear space with the sup norm).
4. Let \mathcal{A} be an algebra of continuous functions on \mathbb{R}. Suppose we know two facts about \mathcal{A} :
5. Given $x_{1} \neq x_{2}$, and y_{1}, y_{2} there is an $f \in \mathcal{A}$ such that $f\left(x_{j}\right)=y_{j}$.
6. For every $f, g \in \mathcal{A}, \max \{f, g\}=f \vee g \in \mathcal{A}$ and $\min \{f, g\}=f \wedge g \in$ \mathcal{A}.
(a) Let K be compact in \mathbb{R} and fix $y \in K$. Given a continuous function g and $\epsilon>0$, show there is some $f \in \mathcal{A}$ such that $f(y)=g(y)$ and $f(x)>g(x)-\epsilon$ for every $x \in K$.
(b) Show $\overline{\mathcal{A}}=C(K)$.
