- 1. Let $f \in C[0, 1]$ and suppose $\int_0^1 x^n f = 0$ for every $n = 0, 1, 2, \dots$ Show f = 0.
- 2. Recall that the polynomials from \mathbb{R} to \mathbb{R} separate points and are nowhere vanishing; consequently, given $x_1 \neq x_2$, and y_1, y_2 there is a polynomial, say p(x) such that $p(x_j) = y_j$. Show this is true for distinct $x_1, ..., x_n$ and arbitrary $y_1, ..., y_n$.
- 3. Let K be compact in \mathbb{R} and show C(K) is separable. (Recall, C(K) is a normed linear space with the sup norm).
- 4. Let \mathcal{A} be an algebra of continuous functions on \mathbb{R} . Suppose we know two facts about \mathcal{A} :
 - 1. Given $x_1 \neq x_2$, and y_1, y_2 there is an $f \in \mathcal{A}$ such that $f(x_j) = y_j$.
 - 2. For every $f, g \in \mathcal{A}, \max\{f, g\} = f \lor g \in \mathcal{A}$ and $\min\{f, g\} = f \land g \in \mathcal{A}$.
 - (a) Let K be compact in \mathbb{R} and fix $y \in K$. Given a continuous function g and $\epsilon > 0$, show there is some $f \in \mathcal{A}$ such that f(y) = g(y) and $f(x) > g(x) \epsilon$ for every $x \in K$.
 - (b) Show $\overline{\mathcal{A}} = C(K)$.