Real Analysis Qual Prep

Summer 2009

Assignment 6: Absolute Continuity and Differentiation

- 1. Construct absolutely continuous functions $f : [a, b] \to [c, d]$ and $g : [c, d] \to \mathbb{R}$ such that $g \circ f$ is not AC.
- 2. Suppose $f \in L^1([a, b])$ and

$$\int_{a}^{c} f(t)dt = 0 \text{ for all } c \in [a, b].$$

Show that f = 0 a.e.

- 3. Does there exist a strictly increasing function f defined on an interval I such that f' = 0 a.e. on I?
- 4. Let I and J be bounded intervals, $f: I \to J$ AC and $\phi: J \to \mathbf{R}$ Lipschitz. Show that $\phi \circ f$ is AC on I.
- 5. Let $f:[0,1] \to \mathbf{R}$ be C^1 , and let

$$Z = \{ x \in [0,1] : f'(x) = 0 \}.$$

Show that $\mu\{f(Z)\} = 0.$

- 6. Let $g:[0,1] \to \mathbf{R}$ be continuous, $g(y) \le g(x)$ if $y \le x$.
 - (a) Suppose g'(x) = 0 for all but perhaps finitely many x. Show that g is constant.
 - (b) Suppose g'(x) = 0 for all but perhaps countably many x. Show that g is constant.
- 7. True or false: There exists a measurable set E satisfying $|E \cap I| = c|I|$, 0 < c < 1 for all bounded intervals I.
- 8. Let $\{f_n\} \in AC(I)$, I = [a, b]. Assume $f_n \to f$ in L^1 and $\{f'_n\}$ is Cauchy in L^1 . Show there exists $g \in AC(I)$ with g = f a.e.
- 9. Suppose $f, f' \in L^1(\mathbf{R})$. Show that

$$\int_{\mathbf{R}} f' = 0.$$